


F.1. OVERVIEW

The overall goal of the Abstraction Based Complexity Management seedling was to research existing
drivers of complexity in aerospace systems, and notionalize a new design paradigm that could
significantly reduce the cost and schedule associated with creating these systems. The fundamental
areas of research considered as part of this activity included

• Develop a measure of complexity that utilizes available systems parameters.

• Assess the uncertainty of complex hybrid systems and the relationship to complexity.

• Define an abstraction-based design method to provide formalism to the definition of the
system.

• Determine a method of architecture synthesis that can be used to explore the complete design
space available during early conceptual design.

• Assess analytical methods available to identify weakly connected areas in a complex system
for the purpose of clustering.

Each of these topics is discussed in detail in the the following sections of this Appendix. Each
section comprises a draft of a stand-alone paper with the intention that each will be presented at
an appropriate future industry conference. A brief discussion of the major topics of the seedling
activity is provided here for context.

Complexity Measure

To enable a design process that utilizes complexity as a primary driver, an appropriate definition
of complexity is clearly needed. There are many options for defining this quantity, some more
useful than others. To be useful, the resultant equation should consist of parameters that are
readily available to the designer. While many previous works have considered part count and/or
interconnects as an indicator of complexity, this significantly oversimplifies the problem. It is
of course possible to design a system that consists of many interconnects, and yet is not complex.
Conversely, a system that performs highly complex functions, perhaps with the aid of software, may
have relatively few components or interconnects. Also of importance is the nature of the substance
that is passed from component to component, particularly in an air vehicle. For example, hydraulic
interconnects are typically more complex that pneumatic interconnects due to the nature of the
respective fluids and the pressures at which they operate.
In addition to physical interconnects and components, the functional behavior and interaction
between components and subsystems is another element of complexity. The potential for dynamic
instabilities increases as systems become more interconnected and time scales become increasingly
separated. While a single, robust method for capturing these behaviors is still under development,
a general framework is defined here.
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F.1. OVERVIEW

The overall representation for complexity developed under this effort is shown in Eq. F.1. The
first term represents the number of components in the system under consideration. Note that
this is not simply a summation, but a weighted sum that captures inherent complexity associated
with an individual component. This is an important element to capture to enable tradeoffs where
component reduction is achieved at the expense of fewer, more complex components. An example
of this can be seen in the trend toward reduced airfoil count in gas turbines. Turbine designers
have been moving toward reduced airfoil counts for years in attempts to reduce cost. However,
reducing the number of airfoils in a turbine requires that each airfoil now produce more thrust. In
addition, each blade will now be heavier with associated increases in hub stress. Therefore, the
design of each airfoil has become more complex in order to meet the desired goal of reduced blade
count. This inherent complexity is captured by the αi terms in Eq. F.1.
The second term in Eq. F.1 represents the number of interconnects in the system under considera-
tion. Again, however, this is not a simple summation. Also reflected is the inherent complexity of
each interconnection. As mentioned previously, passing various quantities between parts will have
different levels of complexity associated with them. Other elements of each interconnection can
be captured in this formulation as well, such as overall length. These properties are important to
capture to reflect manufacturing related elements that are important to overall system complexity.
The final term in Eq. F.1 consists of two quantities: one that represents the level of abstraction
currently under consideration ("n"), and the other termed "graph energy". The reader will note
that the log terms in this representation include a log 7 in the denominator. This value is set based
on the assumption that from the highest to lowest level of abstraction there are seven layers. This
is based on a heuristic decomposition of typical aerospace vehicles, and may need refinement for
other systems under consideration.
The graph energy term (E (A)) captures a number of potentially important elements of a system.
At a high level, this term represents the density of connections in the system with respect to the
total number of possible interconnections. The measure of this quantity can be determined in a
number of ways. The one we choose here is to take the summation of the singular values calculated
from the adjacency matrix of the system:

A = U
∑

V T =
N∑
i

σi (ui · vi) (F.2)

Further details associated with the measure of complexity and its use to assess system architectures
is presented in section F.6 and section F.7.

Overall Design Flow for Management of Complexity

To manage the complexity associated with heterogeneous cyber-physical systems, an abstraction-
based and model-based design process is suggested here. The specific abstraction-based method
utilized is termed Platform-Based Design. This approach has been used with great success in the
computer chip and automotive industries. To drive this process, models of components and other
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F.1. OVERVIEW

Figure F.1: An example of a platform-based design flow for a cyber-physical system

important aspects of the design (e.g. mission models, cost models, etc.) must be developed. The
Platform Based Design method provides formalism to the design process, separating the specifica-
tion of functionality from that of architecture development, allowing exploration of a larger design
space. The system requirements associated with the design are fed into the process as constraints
that must be met before the next level of detail can be completed. Architectures are composed
from the library of components available to the designer, and the resultant system must provide
coverage of the overall requirements space. An overall view of this process is presented in Fig. F.1.
With an architecture thus developed, analysis of the system can be accomplished to peform an
assessment of additional important parameters. For example, the graph of the system can be
analyzed to look for potential dynamic instabilities, and the design structure matrix can be assessed
for problematic interfaces. The overall design flow showing this process is presented in Fig. F.2.
Further detail of the overall flow is provided in section F.2. In addition, detail of the Platform Based
Design process and its application to an example electric power system is provided in section F.3.

Architectural Enumeration

The synthesis of candidate architectures that meet the requirements set forth in the system spec-
ifications is a critical element to allow the management of complexity. There are a number of
methods available to accomplish this. One of these methods falls out directly from the Platform
Based Design process. The formalism of Platform Based Design allows the description of a sys-
tem as a set of equations that, when solved, provides the definition of an architecture that is
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Figure F.2: Design flow to manage complexity in heterogeneous cyber-physical systems
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F.1. OVERVIEW

Figure F.3: The ability to synthesize architectures is key to managing complexity

correct-by-construction. An example of this approach is included in the detail of section F.3.
Another approach to developing architectures utilizes a filter-based method that identifies the
complete set of possible instantiations, and subsequently identifies the subsets that are feasible, i.e.
meet all of the conditions specified for interconnections amongst components. An example of one
such architecture is shown in Fig. F.3.
One of the benefits of this approach is the insight gained by the ability to visualize any architecture
in the feasible set. By assessing these architectures for various parameters, such as complexity, a
great deal of learning about the design process can be gained. For example, Fig. F.4 depicts the
set of feasible architectures that were indentified in a study of fighter aircraft subsystems. Over
20,000 possible architectures were identified that could be constructed to create the aircraft under
study. When these architectures were then assessed for complexity using a variant of Eq. F.1,
and subsequently ranked from lowest to highest complexity, the results were as shown in Fig. F.4.
Superimposed on this graph are the complexity numbers calculated for both the F-18 and F-22
fighter aircraft. It is interesting to note that the F-18, which has demonstrated a very stable cost
basis during its lifetime, lies in an area of the graph that exhibits a low slope of the cost/complexity
trend. This indicates that small changes in complexity have very little impact on system cost. In
contrast, the F-22 aircraft is not only very high on the complexity curve, but is also in an area with
a very high slope. This indicates that even small increases in complexity lead to dramatic increases
in cost.
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Figure F.4: Complexity and cost for various architectural possibilities

Further detail on the filter-based method of architectural enumeration is presented in section F.5.

Assessing Architectural Uncertainty

It is generally believed that there is a monotonic relationship of increasing cost to increasing com-
plexity. Less clear is the relationship of uncertainty to complexity. Is it possible to architect a
system that is highly complex and yet highly certain in its behavior, and vice versa? This question
is important as low TRL technologies are planned for insertion into development programs that
may span a decade or more. It is also important as an additional parameter to consider in the
design process when multiple architectures may exhibit similar levels of complexity. Figure F.5
presents the feasibility (defined here as the likelihood of meeting design requirements) of various
architectures studied in this work. Of note is the fact that all-electric architectures have a signifi-
cantly higher level of likelihood that they will be unable to meet all system requirements (thermal
requirements in this case). There are a number of factors that contribute to this assessment, and
they are presented in section F.4. Robustness, another system characteristic closely related to
uncertainty, is also critical to the long term sucess of a vehicle platform. Robustness can be viewed
as the ability of a system to continue to meet its design intent as it experiences both internal
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Figure F.5: Feasibility and complexity for 4th and 5th generation fighter aircraft

and external perturbations. Section F.4 describes uncertainty and feasibility of architectures and
provides detail on the assessment of these characterisitics.
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Design System for Managing Complexity in Aerospace
Systems

Sandor Becz1, Alessandro Pinto2, Lawrence E. Zeidner1, Ritesh Khire3, Andrzej Banaszuk4, Hayden M. Reeve5

United Technologies Research Center, East Hartford, CT, 06108

As defense systems become increasingly complex, cost and schedule overruns become
increasingly problematic. With reduced budgets, smaller acquisitions, and multiple
competing programs, the Department of Defense struggles to meet the needs of current and
future force requirements. At the same time, systems engineering practices have not kept
pace with the increase in performance requirements typical of today’s defense platforms. In
order to better manage the exploding complexity of these systems, a new design paradigm is
clearly needed. The use of abstraction and model-based methods can provide the formalism
required to meet these needs. This paper presents an overview of a notional design system to
provide these tools and discussing the benefits of this approach.

I. Introduction

he past several decades have seen the introduction of significant technological and architectural changes in
aerospace systems in an effort to improve the performance and capability of new platforms. For example, the

787 and F-35 have incorporated more-electric systems for functions such as cabin pressurization and flight control
actuation. The push to lower maintenance cost and increased dispatch reliability has lead to the adoption of
prognostics and health management (PHM) systems. The implementation of fly-by-wire for flight control has
reduced weight and pilot work load on many platforms. However, these and other driving forces have lead to an
exponential growth in the complexity of modern aerospace platforms and accompanying design and development
challenges.

The fifth generation F-35 tactical fighter offers a good example of the increased capability these new systems
provide and also the resulting challenges. The F-35 is the only fighter capable of transitioning from vertical flight to
supersonic cruise. It offers superior survivability through the incorporation of features such as internal stores and a
composite airframe. In short, it offers 3-8 times the operational capability of fourth generation aircraft such as the F-
16 or F-18 while providing superior range. This capability, however, has come at the cost of increased technical
complexity. For example, the F-35 has 130 subsystems, order 105 interfaces, and 90 percent of its functions
managed by software1. This is a substantial growth from the F-16 that has 15 subsystems, order 103 interfaces, and
less than 40 percent of its functions managed by software1. Greater electrical loads from avionics, power
electronics, and airframe actuation have increased power management requirements and more closely coupled
systems together. These increased avionics and electrical loads, when combined with increased engine and
actuation heat loads have increased the demands on the aircraft thermal management system while the thermal
constraints of a composite airframe and limited ram cooling make it harder to get heat off the aircraft.

These increases in technical complexity have been accompanied by increases in complexity of system
requirements and organizational partnerships. Complexity in requirements stems from the need to meet multiple
present and future mission objectives. The F-35 design meets multi-role objectives through three different variants:
Short Take Off and Vertical Landing (STOVL), Carrier Variant (CV), and Conventional Take Off and Landing
(CTOL) operations (Figure 1). This requires that the center body of the F-35 be designed to meet a wide range of
requirements. There is also increasing complexity in the development team. The F-35 is being funded by nine
partner nations and being developed by a broad multinational team. Increasing complexity in requirements and
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development teams is not solely a challenge for government funded development programs. The 787 is a good
example of a multi-national development team and supply chain and the challenges associated with this.

Figure 1: Illustration of the three F-35 variants (left) and F-35 in flight

These tightly coupled aircraft subsystems often have very different length and time scales and the dynamic
nature of their interactions, coupled with their inherent uncertainty, drive system behavior that is often difficult to
predict during conceptual and preliminary design stages. This lack of understanding results in so called “emergent
behavior” or functionality that is not intended but realized during validation and verification of the system. For
example, the F-35 has required redesign of its 270 VDC electrical system following issues identified during flight
testing2 and its thermal management system, which meets requirements, may need to be redesigned to provide more
thermal margin3. The A400M provides further example of complexity issues, in this case stemming from
development and integration of the Full Authority Digital Engine Control (FADEC)4. The complexity of new
aerospace systems have contributed to unexpected development costs and delays on both military programs (F-35
delayed 1-3 years, A400M delayed 3 years) and commercial programs (787 delayed 28 months, A380 delayed 18
months).

Analysis conducted by the US Government Accountability Office (GAO) of major defense acquisition programs
found that research and development costs are on average 42% higher than originally estimated and that the average
delay in delivering initial capability to the war-fighter is 22 months5. Analysis by the RAND Corporation found that
the largest component in the growth in the cost of fixed wing aircraft has come from increased complexity1. As
systems have become more complex they have become not only more expensive to develop, but the ability to predict
that development cost is inaccurate. Managing and minimizing the complexity of new system development offers
the ability to reduce both the magnitude and unpredictability of development cost. The GAO found that
development programs that had more knowledge earlier in the development cycle incurred reduced cost overruns.
Specifically: programs that start development with fully mature critical technologies experienced 30% less R&D
cost growth; programs that held system engineering reviews (requirements review, functional review, or preliminary
design review) prior to development start experienced 20% less cost growth; finally, programs that had no changes
in key performance parameter requirements had one third the cost growth of other development programs.

To meet the challenge of developing future complex systems in a cost-effective and predictable manner a new
generation of design processes and tools are required that manages complexity at multiple levels. In many
aerospace subsystems the design architecture and technologies have not changed for decades. The arrival of new
architectures and technologies has not been accompanied by a commensurate advancement and adoption of the
design processes and tools needed to develop these very complex systems. The next section presents a new design
paradigm and discusses key needs and potential tools that must be created to address these needs. The unifying
theme of these tools is to attain knowledge earlier in the design stage in order to better identify the scale, impact, and
behavior of system interactions early in the design process in order to ensure complexity is understood before key
design decisions and development investments are made.
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Figure 2: The traditional design ‘V’ showing an estimation of the introduction, detection, and cost of removal
of faults during software development

Figure 3: Proposed design process for complex systems
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II. Overview of Design Process for Complex Systems

The design approach employed within the defense industry today is one of sequential flows of information separated
along functional lines. For example, power system design activity flows from top level requirements which exist
separately from hydraulic system requirements, and so on with each major subsystem. Within each system domain,
the architectural layout of components is typically performed first with the overall functionality and performance
determined through analysis of the selected architecture. Once the primary components have been assembled the
supporting systems such as controls and communication are then developed around this layout. This approach of
subdivision and refinement into more detailed design representations results in a ‘design V’. This paradigm has
been applied widely in many industries to organize the development process and in many applications the sequential
development and refinement from concept to preliminary design to detailed design is functional. For complex
systems with a great deal of interaction this compartmentalized design process leads to significant amounts of
rework late in the design phase due to issues related to performance shortfalls as well as unpredicted emergent
behavior resulting from various system interactions. The cost of the late detection of faults during software
development has been characterized by Bruce Lewis of Army ARMDEC using data from a NIST analysis of the
economic impact of inadequate infrastructure for software testing6 (Figure 2). The ability of subsystem suppliers to
pass requirements and static boundary conditions “over the wall” to other subsystem suppliers is no longer
acceptable. Decisions made in isolation respective to one system (power distribution, for example) have
repercussions on all other systems due to emergent behavior.

Given these limitations inherent in today’s design processes, a new design approach is required that incorporates
not only individual subsystem functional performance, but also all of the dynamic interactions between these
systems. In addition, control and communication must be considered early in conceptual design as primary aspects
of equal importance to meeting platform performance. To maintain tractability, abstraction must be introduced into
the design flow to expose only those elements relevant to various stages of design, but without sacrificing the link
between design choices and system performance requirements. Synthesis techniques that automatically explore the
design space in search of architectures with improved performance must also be included due to the limitations of
humans to manually search the large number of configurations possible.

A candidate design system is shown in Figure 3. System requirements and component libraries (representing the
existing knowledge of constitutive parts of potential solutions) are formally represented in a formal design language
such as AADL, UML, and SysML [reference]. This information feeds a design process that has four key elements:

1. Abstraction Based Design Tools: Provides a design and evaluation framework that can model
complex heterogeneous systems. Enables abstraction of system models to allow complex interactions
(e.g., controls and communications) to be assessed at high level of abstraction early in the design cycle.
Incorporates verification and ‘correct by construction’ elements.

2. Quantitative Complexity Metrics: Quantification of complexity to provide a metric that can guide
early design decisions and identify sources of complexity within candidate architectures. Complexity
quantification needs to be abstracted to enable its use from early conceptual design through product
development.

3. Advanced Architecture Synthesis Methods: An advanced set of tools that enables the formal and
automated architecture synthesis, enumeration, and evaluation of all feasible architecture options, and
decomposition and clustering of architectural elements in order to minimize complexity propagation in
the system.

4. Robust Uncertainty Management: Advanced tools to access the interplay between complexity and
uncertainty. Enabler in identifying strong coupling between systems with high uncertainty, thereby
allowing the identification and management of key risks.

The following sections address each area in more detail, discussing the key requirements of these approaches and
novel elements.

A. Abstraction Based Design
To meet the needs of future platform developers, abstraction of the design space is necessary to allow early

conceptual efforts to progress quickly without sacrificing the ability to determine if performance requirements are
satisfied. For example, as architectures become increasing distributed and heterogeneous, reliability and fault
tolerance become primary design factors that can no longer be relegated to a “post-assessment” once systems design
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is complete. Therefore, a means of quickly decomposing systems and analyzing their interconnections and the
effect of cascading failures must be developed to facilitate the exploration of extremely large design spaces.

The methodology known as Platform Based Design (PBD)7 is a key intellectual framework to utilize in product
development in situations where there is a great heterogeneity of subsystems – different physical, computational and
communication subsystems and choices for architectural implementation. PBD also addresses situations where
there is large scale both in state and physical distribution as well as the situation where the subsystems are integrated
in that there is significant interaction that must be recognized and exploited in order to meet performance and cost
targets.

There are two key principles behind PBD to address issues in the development of complex systems for defense
applications. PBD addresses complexity by introducing into the design process layers of abstraction that provide
appropriate fidelity for effective design decision making while bringing forward implementation constraints into the
design early in the overall process thus enabling early verification. PBD also separates out the specification of the
functionality and the architecture and at each layer of abstraction maps the required functionality to a chosen
architecture and then refines the choices at each layer. This separation enables the effective trade study and capture
of requirements versus cost and performance and the reduction of overall complexity.

PBD methodology was successfully adopted by several automotive manufacturers in Europe for managing
development time and cost as this design process enables management of increased complexity, enables software
reuse, and reduces the verification and validation effort. However, there is significant investment needed to extend
Platform Based Design to design of military aerospace systems because of the additional system complexity,
performance and safety requirements well beyond and above those of the commercial car industry.

Effective verification of system level performance is a key to delivering high performance and cost effective
solutions to the defense contractor base. PBD is a framework for the effective deployment of tools for this
verification to be done either through a “correct by construction” approach or through the deployment of verification
tools throughout the design process. The key enabling technology is twofold: first to insert appropriate verification
in the abstraction layers early in the design process and second to deploy robust design tools to quantify and mitigate
the effects of uncertainty.

The creation of abstraction layers as defined in the PBD methodology is a key to controlling complexity and
producing a truly scalable design methodology. At each layer of the process design space exploration is used to
create a rich set of alternative architectures to meet required functionality, moreover, it is critical to verify the design
with constraints that will be seen at lower levels so that “large loop” re-designs are avoided. PBD thus offers the
framework for effective design. An example of how PBD might be applied to the architecture synthesis of an
aerospace electrical system is provided in Reference [8].

B. Characterization and Quantification of Complexity
A key element to the proposed design system is the ability to quantify the complexity of advanced systems

throughout the design process. This requires both abstract (i.e. low fidelity) complexity metrics to serve as a leading
indicator of complexity for use early in the process during configuration selection, cost estimation, and bidding and
proposing, all the way to detailed complexity metrics for use during detailed design. There has been considerable
work defining complexity but less effort on constructing a quantitative metric that can guide design decisions. Kim
and Wilecon9 provide a review of complexity definitions that have been developed. These definitions cover the
range of project, product, R&D/innovation, integration, and market areas and the definitions include the following
core elements:

 Numbers: Number of different disciplines or departments involved. Number of parts, technologies, or
functions required in a product.

 Degree of Interdependency: Level of interdependency among the domains, functions, or disciplines
involved.

 Intricacy or difficulty: Novelty of project (minor modifications and growth and derivative versions
versus clean sheet designs with untested technologies)

 Limitations: A compounding factor that can increase the complexity in the areas above. Examples
include: limited time to market, tight performance requirements (weight, thrust), stringent constraints
(thermodynamic limitations).

Other definitions have been used in the aerospace field. AFRL’s INVENT program10 views complexity as
equivalent to the inflexibility of a design to meet future growth requirements. That is, how tightly integrated the
design space is with respect to change. Arena et al.1 used the term complexity loosely to refer to the increased
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capability of aircraft. Jones et al.11 developed a quantitative metric to estimate the cost of large scale systems by
developing a metric based on the number of nodes and links within a system.

To enable a design process that utilizes complexity as a primary driver, an appropriate definition of complexity
is clearly needed. There are many options for defining this quantity, some more useful than others. To be useful, the
resultant equation should consist of parameters that are readily available to the designer. While many previous
works have considered part count and/or interconnects as an indicator of complexity, this significantly
oversimplifies the problem. It is of course possible to design a system that consists of many interconnects, and yet is
not complex. Conversely, a system that performs highly complex functions, perhaps with the aid of software, may
have relatively few components or interconnects. Also of importance is the nature of the substance that is passed
from component to component, particularly in an air vehicle. For example, hydraulic interconnects are typically
more complex that pneumatic interconnects due to the nature of the respective fluids and the pressures at which they
operate.

In addition to physical interconnects and components, the functional behavior and interaction between
components and subsystems is another element of complexity. The potential for dynamic instabilities increases as
systems become more interconnected and time scales become increasingly separated. While a single, robust method
for capturing these behaviors is still under development, a general framework is defined here.

(1)

The overall representation for complexity developed under this effort is shown in Eq. 1. The first term represents
the number of components in the system under consideration. Note that this is not simply a summation, but a
weighted sum that captures inherent complexity associated with an individual component. This is an important
element to capture to enable tradeoffs where component reduction is achieved at the expense of fewer, more
complex components. An example of this can be seen in the trend toward reduced airfoil count in gas turbines.
Turbine designers have been moving toward reduced airfoil counts for years in attempts to reduce cost. However,
reducing the number of airfoils in a turbine requires that each airfoil now produce more thrust. In addition, each
blade will now be heavier with associated increases in hub stress. Therefore, the design of each airfoil has become
more complex in order to meet the desired goal of reduced blade count. This inherent complexity is captured by the
 terms in Eq. 1.

The second term in Eq. 1 represents the number of interconnects in the system under consideration. Again,
however, this is not a simple summation. Also reflected is the inherent complexity of each interconnection. As
mentioned previously, passing various quantities between parts will have different levels of complexity associated
with them. Other elements of each interconnection can be captured in this formulation as well, such as overall
length. These properties are important to capture to reflect manufacturing related elements that are important to
overall system complexity.

The final term in Eq. 1consists of two quantities: one that represents the level of abstraction currently under
consideration ("n"), and the other termed "graph energy". The reader will note that the log terms in this
representation include a log 7 in the denominator. This value is set based on the assumption that from the highest to
lowest level of abstraction there are seven layers. This is based on a heuristic decomposition of typical aerospace
vehicles, and may need refinement for other systems under consideration.

The graph energy term E(A) captures a number of potentially important elements of a system. At a high level,
this term represents the density of connections in the system with respect to the total number of possible
interconnections. The measure of this quantity can be determined in a number of ways. The one we choose here is
to take the summation of the singular values calculated from the adjacency matrix of the system:

(2)

To effectively manage complexity in the future, domain specific standard measures of complexity are needed
that would allow competing offerings to be ranked, similar to the capability-to-cost index (CCI) used to quantify the
goals for future gas turbine engine performance. More importantly, identifying the key attributes and contributing
factors that create or amplify complexity (and therefore development cost and risk) is a key requirement to being
able to manage and minimize complexity. United Technologies Research Center (UTRC) has started to explore
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different methods and constructs to quantify complexity for aerospace systems12. This work investigates candidate
system attributes that could be used quantify complexity.

C. Advanced Architecture Synthesis Methods
Advanced architecture synthesis methods are required to meet three emerging challenges. The first challenge

stems from next generation systems becoming more and more complex and multi-disciplinary, resulting in the
design process no longer being able to rely on the intuitive expertise of a small number of designers to make the
initial down-selections to create a design space that is tractable for current methods. A formal process is required to
synthesize architectures to ensure all known requirements and interactions are acceptable. Furthermore, the rate of
technological advancement and complexity of these systems has increased the design configuration trade space.
UTRC has developed the Architectural Enumeration and Evaluation (AEE) framework to enable the efficient and
traceable decision making that rapidly reduces the entire design space to regions that warrant further investigation13.
AEE provides a rigorous, efficient, and exhaustive means to explore a very large number of technology and
architecture configurations for new application areas. AEE can tackle trade spaces that have millions or billions of
design configuration possibilities and efficiently consider all possibilities to identify the set of feasible
configurations (typically numbering in the thousands) and the set of promising concepts that are worthy of higher
fidelity investigation (typically 10-100).

The second challenge involves superior evaluation of architecture options early in the design cycle. This will be
achieved by the evaluation of both PBD domain models and a complexity metric (at appropriate levels of
abstraction) during architecture evaluation and selection.

The third challenge is to understand how the architectures can be partitioned into sub-domains (so organizational
entities can design and develop them) in a way that minimizes the propagation of complexity between the sub-
domains and therefore minimizes likely development risk and cost. The complexity of each architecture depends
not only upon its constituent technologies and its interconnections, but also on how and to what degree the
architecture is organized hierarchically into modules. Each architecture can be decomposed into many different
hierarchical configurations of modules, each with its own degree of complexity. UTRC has explored a method that
uses a spectral graph partitioning algorithm recursively to determine the hierarchy of modules based on the limited
information available at this early stage in the design process14.

D. Methods to assess the impact of uncertainty throughout the design process
Introduction of immature or new technologies introduces significant uncertainties during the development of

complex systems. This uncertainty is manifested as the lack of accurate characterization of the subsystems during
early design and selection phase. This is in addition to other well known sources of uncertainties such as
environmental conditions and evolving system requirements. With the variability and uncertainty associated with
parameters in complex systems, a formal treatment of their impact on emergent behavior must be included in any
new design paradigm. This component is virtually non-existent in current design systems, especially in the early
phases of design.

It is generally believed that there is a monotonic relationship of increasing cost to increasing complexity. Less
clear is the relationship of uncertainty to complexity. Is it possible to architect a system that is highly complex and
yet highly certain in its behavior, and vice versa? This question is important as low TRL technologies are planned
for insertion into development programs that may span a decade or more. It is also important as an additional
parameter to consider in the design process when multiple architectures may exhibit similar levels of complexity.
Figure presents the feasibility (defined here as the likelihood of meeting design requirements) of various
architectures studied in this work. Of note is the fact that all-electric architectures have a significantly higher level of
likelihood that they will be unable to meet all system requirements (thermal requirements in this case). There are a
number of factors that contribute to this assessment, and they are presented in Khire, et al15.

UTRC has assessed the impact of uncertainties on complex system selection15. This work demonstrated, through
numerical simulation, that selection of good system architecture is critical to minimize the vulnerability of complex
system to above mentioned uncertainties. In other words, the selection of apt complex system architecture will allow
it to fulfill all the functional requirements. At the same time, the system will be robust against uncertainties,
potentially resulting in minimum development time and resource investment.
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Figure 4: Complexity and uncertainty may have counterintuitive relationships.

E. Complexity as a Design Metric
One of the benefits of a complexity-based design goal is the insight gained by assessing the pattern of complexity
growth within the design space. Utilizing the architecture enumeration methods mentioned in Section C, a set of
over 20,000 possible architectures were identified that could be constructed to create an advanced fighter aircraft.
When these architectures were then assessed for complexity using a variant of Eq. , and subsequently ranked from
lowest to highest complexity, the results were as shown in Fig. 5. Superimposed on this graph are the complexity
numbers calculated for both the F-18 and F-22 fighter aircraft. It is interesting to note that the F-18, which has
demonstrated a very stable cost basis during its lifetime, lies in an area of the graph that exhibits a low slope of the
cost/complexity trend. This indicates that small changes in complexity have very little impact on system cost. In
contrast, the F-22 aircraft is not only very high on the complexity curve, but is also in an area with a very high slope.
This indicates that even small increases in complexity lead to dramatic increases in cost.

Figure 5: Cost and complexity numbers for a notional fighter aircraft study conducted using architectural
enumeration methods.
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III. Concluding Remarks and Future Work

A. Concluding Remarks
This paper has presented a notional design system with the intent of managing the exponentially growing

complexity of heterogeneous defense platforms. As subsystems become more tightly coupled, performance
requirements continue to increase, and software becomes an ever greater enabler of system functionality, the
development of new methods capable of dealing with the challenges associated with designing these systems is
critical. Platform Based Design provides an intellectual framework on which to construct such a system. By
formally utilizing abstraction in the design space, multiple levels of fidelity can be leveraged to optimize system
functionality. In addition, model-based methods coupled with architecture synthesis and analysis techniques allow a
much richer design space to be explored, leading to more optimal and robust designs.

B. Future Work

To realize the design paradigm depicted in Fig. 3, several developments are necessary. Both Platform Based
Design and model based design methods must be developed that allow for heterogeneous cyber-physical systems to
be described formally. The semantics required to construct a language that allows these domains to be combined in
a single design environment must be created to allow these model-based methods to operate. In addition, an
overarching framework that ties the tools that create these models together must be developed. This capability could
potentially lead to a consortium-based approach to the design of future defense systems that allows for model
exchange and offers to significantly reduce the cost and schedule required to design highly complex cyber-physical
systems.
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Correct-by-Construction Design of Aircraft Electric

Power Systems
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We formalize correct-by-construction design following the principles of Platform-Based
Design.1 The design proceeds by refinement steps. At each step, a specification is given in
terms of requirements that an implementation must satisfy. The implementation choices
are implicitly captured by a set of components and their composition rules. A class of
candidate implementations of the specification is derived by formulating and solving an
optimization problem. The implementation becomes the specification for the next step
in the design flow. We present the trade-offs in the selection of the abstraction layers.
We show how the methodology can be applied to the design of electric power systems by
decomposing the design flow into the following steps: generator selection, generation of
the connection configuration under faults, and topology design of the power distribution
system.

I. Introduction

The design flow used today for electrical systems is mainly top-down and provides limited ability to
predict, early in the design process, the consequences of radical departures from known designs on the overall
performance. The design of aircraft secondary power systems has been a derivative process where previous
designs that are known to work under go slight modifications to accommodate new features. Through the
end of the Second World War 28 V DC systems were typical. As loads increased with the advent of the jet
age the more weight efficient 115 V AC / 400 Hz distribution system became the standard.2 For the next
four decades this system dominated, typically using constant speed devices (CSDs) to ensure the constant
400 Hz frequency and 2 or 4 channels. Given the prevalence of this electrical power system research effort
was directed mainly on the improvement of component level performance (weight and efficiency) rather
than design methodologies and tools for automatic design exploration and verification. The arrival of new
“more-electric” technologies such as electric main engine start, electrical cabin air pressurization, and electric
primary flight control actuation has again increased the power demands on the electrical system and resulted
in the adoption of higher voltage systems (270 V DC, 230 V AC Variable Frequency) in order to reduce
distribution (feeder) weight. These changes have also brought system synthesis, evaluation, and verification
challenges that are not well meet by the legacy design system. For example, the 787 has a fourfold increase
in electrical power capability over the 777, threefold increase in the number of electrical buses, and a XXfold
increase in the number of distribution states. Because the requirements imposed by these new applications are
drastically different from the ones imposed on the previous generation of aircraft, re-use of known solutions
and methods becomes inadequate. A major architectural redesign of the electric systems poses challenges
to engineers that find themselves engaged in manual exploration of a large design space constrain by many,
and informally captured constraints.

Typically, a new design is prototyped and tested. If the application requirements are not met, then the
system is re-designed. The re-design cycle goes through the manual process of changing design decisions

∗Senior Engineer, Embedded Systems and Networks
†Staff Engineer, Thermal Management, AIAA Member.
‡Staff Engineer, Thermal Management, Senior AIAA Member
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and producing a new prototype (or a change in the current prototype). Re-design is not unusual and is
the direct consequence of difficulties to evaluate design solutions and predict the impact of design decisions
made in the early stages of the design process on the performance of the final implementation. This problem
can be attributed to several reasons, among which we mention the semantic gap between the specification
of the system requirements and the details of the implementation platform, and the lack of methods, tools
and formal models helping designers in marching from the system requirements to the detailed system
implementation.

These two factors are not independent. System requirements are captured using documentations (assisted
by requirement management tools such as DOORS3), and manually refined into several linked documents that
capture not only the partitioning of the system into sub-systems (already implying the system architecture),
but also the local performance constraints that each sub-system must satisfy. However, the number of
possible choices for a system architecture is large which makes this processes complex, and the solution sub-
optimal at best. Perhaps, one simple complexity measure for a design can simply be defined by the number
of requirements and the number of degrees of freedom in choosing the implementation. Further, because
the high level architectural decision are based on non-executable (and non-analyzable) models, it is difficult
to assess the behavioral properties of the system, and therefore impossible to look-ahead possible emergent
behaviors arising from the composition of sub-systems. For these reasons, some tools have been developed to
help engineers evaluating the fitness of an architecture to a given application. The Design Structure Matrix
(DSM)4,5 and the Architecture Design Graphs (ADG)6 have been used in aerospace (among other fields).
However, these methods provide limited capabilities for efficient design exploration at different stages of the
design process.

In this article, we present a correct-by-construction methodology inspired by the Platform-Based Design
(PBD)1 methodology that has been successfully used in the automotive and consumer electronics domains .
The PBD methodology provides an intellectual framework where a design flow that implements a specification
proceeds through self-similar refinement steps. In this framework there is a clear distinction between the
function (what the system is supposed to do, i.e. the requirements) and the architecture (how requirements
are realized, i.e. the components and their interconnection that together implement the function) that
allows for automatic design space exploration. Each refinement step consists in selecting a platform instance
that correctly implements a specification. A platform instance is a valid composition of library elements
that are characterized by their cost and performance metrics. Thus, a design step can be formalized by
an optimization problem (in general multi-objective) whose solution (or set of non-dominated solutions)
represents the functional specification to be implemented by the sub-sequent refinement step. This process
repeats until the abstraction level is close enough to the implementation.

Key to the success of such methodology is the careful selection of the abstraction layers, i.e. the selection
of the refinement steps. In fact, each step explores the design space along a subset of the axes representing
the design variables. Thus, it is important to carefully prioritize the design choices and make sure that the
performance and cost models are accurate enough for the level of abstraction such that design decisions can be
made without compromising the quality of the final implementation. Ideally, if each refinement step is done
by solving an optimization problem and if the models are accurate (with respect to the abstraction level),
the verification effort can be minimal because the implementation is guaranteed to satisfy the specification
by construction.

II. Preliminaries

Formal treatments of the PBD methodology have been presented using different mathematical frameworks
such as agent algebra7 and labeled graphs.8 In this section we give a less formal description to outline the
trade-offs involved in the definition of a concrete instantiation of a PBD design flow.

Consider a library of parametric components that can be instantiated and configured by selecting the
values of the parameters. Each instance s of a library element (e.g. a generator or a load) has a set Qs of
associated parameters. A parameter q ∈ Qs denotes a metric (e.g. the rated power of a generator) that
affects cost and performance of a design . Let xs,q be a variables associated with parameter q of component
s. This variable ranges over a domain of values Dq. For instance, the availability a of a generator ranges in
the closed interval Da = [0, 1] ⊂ R. A system comprises a set of component instances S and implicitly defines
a set of decision variables X = {xs,q}s∈S,q∈Qs

ranging over the domain DX = ×s∈S,q∈Qs
Dq. Parameters

are very general quantities that can be used to model choices in the design of a system. For example, a
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binary parameter ι can be used to decide whether a component is really needed in a system or not. This
parameter could be used to decided whether a system needs one or two generators. A designer may start
with an instance that include two generators s1 and s2, and then realize that one generator is sufficient to
power all loads, in which case the value of the variable xs1,ι may be set to zero to denote that generator s1 is
superfluous and can be removed from the system (we will exercise this feature later in our examples). Also,
some of the variables may be assigned as a result of the specification. For example, the power required by a
load is given as input to the design problem.

The design space is a subset of DX . In fact, a platform is defined by the library and by a set of constraints
called composition rules. For example, in some power systems, generators cannot be connected on the same
bus. Therefore, the design space, i.e. the set of valid assignments of the variables X is restricted by a set of
platform constraints Cp(X). The functional requirements are captured by another set of constraints Cm(X)
that define those assignments that correctly implements the specification. For example, under all possible
faults, critical loads must be always powered; the total power required by loads is provided by generators.
Thus, the set of system configurations that are valid platform instances and that satisfy the specification is
Cp(X) ∩ Cm(X). Finally, the cost of a system is in general a multi-objective function F : DX → Rf . Thus,
the optimal configuration problem can be written as follows:

minimize
X

F (X)

subject to X ∈ Cm(X) ∩ Cp(X).

The complexity of this problem depends on the number of decision variables of the problem, i.e. |X|,
the structure of the constraints, and the form of the cost function. If the library is defined a a very low
abstraction level, with many components each characterized by many parameters, finding a solution to this
problem becomes challenging. Imagine for example considering a library that includes wires, contactors,
transformer-rectifier units (TRU), converters, inverters, generators, loads, batteries, circuit breakers, and
all other detailed components of a typical system. The design process can be divided into refinement steps
where the set X is partitioned into sub-sets X1, . . . , XL. At the i-th layer, the following problem is solved:

minimize
Xi,X̃i

Fi(Xi, X̃i, X
∗
1 , . . . , X

∗
i−1)

subject to (Xi, X̃i) ∈ Cmi
(Xi, X̃i, X

∗
1 , . . . , X

∗
i−1) ∩ Cpi(Xi, X̃i, X

∗
1 , . . . , X

∗
i−1).

where X̃i is a set of additional variables that are used to capture the abstraction of the variables in the sets
Xi+1, . . . , XL. These additional variables often represent virtual components. We will show an example of
how the power distribution system is abstracted into point-to-point connections by introducing connectivity
variables. The solution of this problem is the set of optimal values X∗i and X̃∗i . Clearly, ∩Li=1Ci ⊆ C meaning
that only feasible solutions should be explored. This formalization shows the choices that need to be made
in the definition of a PBD flow, and interesting additional features that this methodology provides:

1. the set of variables X is far from being unstructured meaning that there are some additional constraints
to take into account when deciding on the partition X1, . . . , XL. For example, the topology of the
power distribution system results as a consequence of the decision on the number of generators and
the connectivity requirements between loads and generators. By the same token, the insertion of tie
and circuit breaker can only be decided after the topology of the power distribution system has been
designed. Structural constraints arise naturally from the notion of refinement where sub-systems are
further decomposed into sub-systems.

2. Ideally, X∗ should be equal to (X∗1 , . . . , X
∗
L). However, this result depends on the quality of the

abstraction, meaning how well the additional variables X̃i, the constraints Cmi
and Cpi , and the cost

function Fi represent the lower abstraction levels. In fact, if the abstractions are not done carefully,
the optimization problem solved at the i-th level may prevent the exploration of part of the design
space by selecting a sub-optimal assignment of the variables in Xi.

3. Because the set of constraints Cpi define the set of valid platform instances, it is possible to capture
domain knowledge by restricting the class of architectures to be considered in the optimization prob-
lems. For example, it is possible to add constraints to only consider hierarchical systems divided into a
primary and a secondary power distribution systems, or restrict the exploration to ring topologies only.
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Moreover, if the optimal configuration of some of the components is known, those design variables can
be fixed in the optimization problem and treated as constants.

4. The optimization problems could in principle be automatically derived from a model-based description
of the library elements. In a virtual engineering environment, the library may also contain components
that do not yet exist, allowing to play “what if” scenarios and automatically compute the requirements
that such components should be able to satisfy. These requirements would be provided in the form of
values for the parameters of the virtual components.

These two observations require to understand the structure of the design problem to build the right
abstractions, and to use languages that allow to represent components and their refinements in a unified
way. In this article we will show examples dealing with the first of these two requirements. The definition
of the right language to use is out of the scope of this article but it is a well explored and evolving research
field. Many system-level design languages are available that provide the required features. Among these,
Metropolis,9,10 Rosetta,11 Architectural Analysis and Design Language (AADL)12 and SysML13,14 are all
good candidates for a correct-by-construction design methodology. Contrary to other methods such as DSM,4

we do not aim at providing a way of documenting and analyzing the interactions in complex systems, but
rather providing an organized design method to overcome complexity.

III. Correct-by-construction design of Electric Power Systems

In our design problem, the specification is given in terms of a set of loads together with their power and
reliability requirements. The objective is to determine the architecture of an electric power system able to
satisfy the demand of the loads. We start with a qualitative analysis of the main drivers of the overall system
cost with the intent to partition the design decisions and define the refinement steps.

The efficiency of a generator η(P, Pl) is a function of the the power P offered by the generator, and
the total power Pl absorbed by the loads connect to it. By fitting data from a database of representative
generators, it was found that the efficiency is a concave function of Pl/P meaning that the efficiency improves
when the generator is fully utilized by the loads.

Observation 1. The maximum efficiency of a power system is achieved when the rated powers of the
generators are matched to the power requirements of the loads.

The weight of a generator is a function of the rated power. The function w(P ) that links the power and
the weight is a concave function and can be fitted well by a quadratic function. This means that in terms of
watt per pound, generators with high rated power are preferred to small generators.

Observation 2. The minimum weight of a power system is achieved by selecting generators with as high
rated power as possible.
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Figure 1. Power profile during a mission from take-off to landing.

To understand the trade off between efficiency and weight, consider the mission profile shown in Figure 1.
In this simple UAV mission, the power consumption is not uniform over time. A peak in the power consump-
tion, mainly due to the use of electric actuators during the persistence phase, can be observed. If we were
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to favour weight over efficiency, we would select a generator able to provide as much as 105kW . However,
this generator would be inefficient for the rest of the mission providing an efficiency of approximately 80%.
If we were to favour efficiency over weight, then one choice would be to use two generators of 85 kW and 30
kW and use the smaller generator only in that phase of the mission where more power is required. In this
case we would have a weight penalty of roughly 10 lb but without any loss in efficiency.

However, an additional metric to consider is the complexity of the power distribution system and the
control and communication sub-systems required to manage redundancy and maintain the desired power
quality. In fact, control complexity increases when generators are matched to the loads because of their
limited authority in driving the voltage on the power buses. Further, increasing the number of generators
would also required to increase the number of buses which has two effects: it makes the topology of the
power distribution system more complex, and it increases the complexity of the state machines that control
power transfers.

Observation 3. The costs of the power distribution system and the control system increase for more efficient
electric power systems.

Figure III shows the qualitative trade-off in the design of the electric power system. Few large generators
will provide the best solution in terms of pounds per watt and in terms of the complexity of the power
distribution system, denoted by cplx. However, many small generators will be able to deliver a very efficient
solution allowing, for example, a UAV to fly longer for the same amount of fuel, while at the same time
lowering the heat rejection requirements. The number of generators affects also the overall reliability of the
electric power system. The Probability Loss Of Function (PLOF) decreases with the number of generators as
more sources are available to power the system loads in the event of a generator failure. In order to maintain
the reliability of the system above a certain value, more components need to be added and therefore the
overall cost and complexity increases.

many small few large

lb=hp

cplx

1¡ ´

PLOF

Figure 2. Trade-offs between weight, efficiency and complexity of the distribution and control systems.

From these observations, we conclude that the the selection of the number of generators and their rated
powers drives the trade-off between cost and efficiency of the electric power system. It is reasonable to explore
this trade-off first in the design flow. However, the cost of the power distribution system must also be taken
into account. In our methodology, this objective can be achieved by including a virtual component in the
library characterized by a few parameters that capture the cost and performance of the power distribution
system.

Consider a power distribution sub-system that connects n generators to m loads. Because loads and gen-
erators may have different voltage interfaces, the cost of power conversion must be taken into account. This
cost depends on which generator powers which load. Moreover, because of the reliability constraints imposed
by the loads, each connection should provide a minimum level or reliability. The number of connections,
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i.e. the number of physical paths that must be provided by the topology of the power distribution system,
affects the cost of the communication sub-system. Finally, the reliability levels of the loads also determine
the cost of the communication sub-system as reliable connections cost more than unreliable ones. The cost
model obtained from historical data shows that the weight of power conversion is a linear function of the
power. Therefore, the total weight of the power conversion units is independent from the way in which loads
are associated to generators. The efficiency of the power conversion units is fixed and therefore there is no
trade off with weight.

Observation 4. The cost drivers for the power distribution system are the number of generator-to-load
connections and their reliability.

Thus, the power distribution system can be abstracted by a set of parameters defining the reliability of
the connections from generators to loads.

In summary, we justify the following design flow for aircraft electric power systems (depicted in Figure III):

Step 1: Generator selection . The specification is given by a representative power profile for each load
together with reliability requirements. The library contains generators, loads and a virtual power dis-
tribution system. The synthesis problem is formulated as a multi-objective optimization problem that
determines the size of the generators and the assignment of loads to generators such that the weight
and the inefficiency of the system are minimized. Notice that the number of electrical power sources
(engine driven generators, ram air turbine generator, batteries) is in general constrained by formal de-
sign rules. For example, a minimum number of power sources are required to meet safety requirements
(primary flight control and cabin pressurization) and ensure high aircraft dispatch availability levels
(main engine start). Furthermore the number of primary generators is almost always a multiple of
the number of aircraft engines. The electrical loads are partitioned into groups based on the required
power supply (28 V DC, 115 V AC, 230 V AC etc.) and the number of generation sources in use during
typical operation. The power distribution system is abstracted by two set of variables: {yij} indicating
whether load i is connected to generator j, and {aij} denoting the availability of the connections.

Step 2: Topology design . The power distribution system is refined by instantiating buses and connec-
tions among them to form an optimal topology. Variables {yij , aij} are refined into paths in the
topology. In addition to busses and contactors, power conversion devices such as transformer rectifier
units (TRUs) and inverters are instantiated to ensure that the different power requirements of the
loads are meet. The topology of the electrical power system distribution architecture is optimized
to minimize cost (weight, inefficiency, etc) and complexity while meeting the system level reliability
constraints.

Step 3: Control design . Given the topology and the paths from generators to loads, and given fault
conditions of the system, a state machine can be synthesized that controls circuit breakers and tie-
breakers to guarantee that critical loads are always powered.

Step 4: Embedded system design . In this last step, the control functions are implemented on a net-
worked system that comprises a network and a set of computation resources.

The last two steps are out of the scope of this article and they will be included in our future work.

IV. Step 1 : Generator selection problem

At this abstraction level, the library provides three types of components: loads, generators and a power
distribution system. Several composition rules may be associated with the platform including connection
rules (generators cannot be connected to other generators, loads can be connected to generators only through
the power distribution system etc.). During this design step, we enforce many of this rules by construction
as it will be clear soon. However, these constraints do not disappear but are propagated down to the lower
levels of abstraction (see Step 2 of the design flow in Section V).

The variables and symbols used in the definition of the optimization problem are shown in Table 1. The
specification includes n loads and T mission phases. The power required by load i during phase t is denoted
by Li(t). Moreover, let ri be the reliability requirement of the i-th load. This set of variables have fixed
values and capture the specification of the design problem.
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Figure 3. Detailed graphical rendition of the first two steps of the design flow.

Symbol Domain Meaning

i {1, . . . ,m} Load index

j {1, . . . , n} Generator index

t {1, . . . , T} Mission phase index

Li(t) R≥0 Power of load i at t

ri [0, 1] ⊂ R Reliability required by load i

Pj [0, 330e3] ⊂ R Power offered by generator j

xj {0, 1} Installation variable

yij(t) {0, 1} Load i connected to generator j

aj [0, 1] ⊂ R Availability of generator j

aij(t) [0, 1] ⊂ R Availability of connection ij at t

Table 1. Symbols used in the formulation of the optimization problem.
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We start by observing that the optimization problem is formulated in terms of the least constraining
platform instance, meaning a platform instance with the maximum number of generators m that a designer
considers appropriate for the application. An upper bound for m is n. However, not all generators will be
actually used by loads, and some of them will be removed as a result of the synthesis procedure. A binary
variable xj is used for this purpose. The value of xj is equal to one if a generator is needed, and zero
otherwise. Each generator is associated with a parameter Pj which denotes the value of its rated power. We
also include the virtual power distribution system as part of the platform instance to be optimized. Binary
variable yij(t) is equal to one if load i is powered by generator j during phase t, while aij is the availability
of the connection. The two composition rules included in Cp1 are the following:

yij(t) ≤ xj ∀ i, ∀ j, ∀ t (1)

aij(t) ≤ yij(t) ∀ i, ∀ j, ∀ t (2)

meaning that node i can be connected to generator j only if generator j is actually present in the
architecture (Constraint 1), and that the availability of a connection is zero when the connection is not
active (Constraint 2)

The set of implementation constraints Cm1
is the following:

∑

i

Li(t)yij(t) ≤ Pj ∀ j, ∀ t (3)

∑

j

yij(t) ≥ λi(t) ∀ i, ∀ t (4)

∑

i,j

ln (1− ajaij(t)) ≤ λi(t) ln ri ∀ i, ∀ t (5)

where λi(t) is equal to 1 if Li(t) > 0 and it is equal to zero if Li(t) = 0. Constraint 3 requires a generator
to be able to power all loads connected to it. Constraint 4 requires that a load be connected to a generator
whenever it needs power during the mission. Constraint 5 imposed that the aggregate reliability of the power
sources connected to the load satisfies it reliability requirements.

The multi-objective function for this problem includes weight and inefficiency components F1 = (W, 1−
η1(1), 1− . . . , 1− ηm(T )) defined as follows:

W =
∑

j

w(Pj)xj (6)

ηj(t) = η(Pj ,
∑

i

yij(t)Li(t))xj (7)

In this formulation we did not consider storage elements which is part of our future work. Storage can
be considered in this formulation by adding a vector of parameters ∆(t) denoting the amount of time the
system spends in phase t of the mission. Energy balance constraints can the be added to the formulation.
The optimization problem is mixed-integer, non-linear and multi-objective. It is therefore a hard problem
to solve. In the next sections we propose some variants of the problem that can solved using standard
optimization methods.

A. Problem variants

The first problem variant that we consider is to remove the dependency from variable t in the formulation of
the optimization problem. Removing the time dependency has two effects. The number of decision variables
is reduced by considering one configuration that satisfies either the worst case or average case scenario. The
second effect is the simplification of the controllers that handle the switching of the contactors to disconnect
and reconnect loads during the mission. This simplification results in a lower complexity and cost for the
distribution network and software development. Together with the elimination of the variable t, it is possible
to further reduce the complexity of the optimization problem by considering the reliability of connections
{aij} to be the same for all connections, say ac. The resulting optimization problem becomes the following:
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minimize
x,Y,P

C

subject to
∑

i

max
i
Li(t)yij ≤ Pj ∀ j

∑

j

yij ≥ 1 ∀ i,

yij ≤ xj ∀ i, j,
∑

j

yij ln (1− ajac) ≤ max
i

ln ri.

Perhaps, the most important abstraction that need to be sought is one that reduces the complexity of
the optimization problem coming from the cost function. Consider the rated power of generators to belong
to a finite set of values DPj

∈ {p1, . . . , pg}. ∀j. This will allow us to define a finite set of weight coefficients
wh = w(ph) and a set of binary variables ujh that is equal to 1 if generator j has rated power equal to ph.
Therefore the total weight of the architecture can be expressed as follows:

W =
∑

j

∑

h

ujhwh (8)

with the additional constraints that
∑
h ujh = 1, ∀j., meaning that a generator can only be of one type.

This formulation does not help in simplifying the expression of the efficiency of a generator. However, a
similar approach can be followed to divide the total power assigned to a generator into l consecutive intervals
L̂k = [qk, qk+1], k = 1, . . . , l, q1 ≥ 0, so that efficiency numbers can be precomputed as follows:

ηjhk = η(ph, qk) (9)

The inefficiency of the system is the sum
∑
jhk(1− ηjhk)zjhk where variables zjhk is equal to 1 if generator j

is used (i.e. xj = 1), has type h and has a total load attached to it in the interval L̂k. Additional constraints
are required to define the variables zjhk. However, this procedure can be automated and the size of each
interval can be defined based on the required approximation accuracy.

With this formulation, we reduced the problem to a binary problem (i.e. one where each decision variable
is binary) that can be solved using standard pseudo-Boolean solvers, genetic or evolutionary algorithms.

V. Step 2: Power distribution design problem

The input to the power distribution design problem is the set of parameter values {y∗ij} and {a∗ij}, together
with the specification used as input to the generator selection problem. Topology design is a known problem
and can be formulated as a multi-commodity flow problem. However, we will see that a pre-processing step
is needed to guarantee that the controller design problem (Step 3 not explored in this paper) is feasiblea.

Consider a set of nodes V = G ∪ L ∪ B in the architecture of the electric power system that comprises
a set G of m∗ ≤ m generators from Step 1, a set L of n loads, and a set B of b buses, where b is an upper
bound on the number of buses in the system. Further, the set of loads G is partitioned in the set of AC
loads LAC and DC loads LDC . Similarly, the set of buses is partitioned in the set of AC buses BAC and the
set of DC buses BDC . For u, v ∈ V , let the binary variable euv be equal to 1 if node u is connected to node

aRecall that from the discussion in Section I, we must ensure ∩Li=1Ci ⊆ C
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v and 0 otherwise. The following composition rules must be considered in the definition of Cp2 :

euv = 0 ∀u, v ∈ G (10)

euv = 0 ∀u, v ∈ L (11)

eu1v + eu2v ≤ 1 ∀u1, u2 ∈ G, u1 6= u2,∀v ∈ B (12)

euv = 0 ∀u ∈ G, v ∈ L (13)

euv = 0 ∀u ∈ LDC , v ∈ BAC (14)

euv = 0 ∀u ∈ LAC , v ∈ BDC (15)

euv = 0 ∀u ∈ G, v ∈ BDC (16)

(17)

These constraints impose that generators cannot be connected to generator; loads cannot be connected to
loads; generators cannot be connected directly on the same bus; generators cannot be directly connected
to loads; DC loads cannot be connected to AC buses; AC loads cannot be connected to DC buses; and
generators cannot be connected to DC buses.

To define the implementation constraints Cm2
we introduce the notion of a path in the power distribution

system. Consider a set of connectivity requirements F ⊆ {(i, j) ∈ L × G|yij = 1} between generators and
loads. For a requirement (i, j), let πuvij be a binary variable that is equal to 1 if the path from i to j uses
the connection from u to v. Obviously, the following must hold: πuvij ≤ euv, ∀u, v ∈ V, yij ∈ F . A unique
path exists between generator j and load i if and only if the following conditions are satisfied:

∑

v∈V
πjvij = 1 (18)

∑

v∈V
πuiij = −1 (19)

∑

u∈V
πuvij =

∑

u∈V
πvuij (20)

The reliability provided by a path must satisfy the following constraint:

∑

u,v∈B
(ln auv + ln au)πuvij ≥ aij (21)

where auv is the availability of a connector (e.g. a TRU, power converter, contactor), and au is the availability
of a bus.

The cost function is a multi-objective function that takes into account the weight and the inefficiency of
the power distribution system. Both these functions depend on the set E = {eu,v} of connectors instantiated
in the architecture, the number of buses used by the power distribution system and and the number of buses
crossed by paths from source to destination. Thus, an optimization algorithm that solves this optimization
problem will provide an architecture with the least amount of buses and connections, and with the shortest
path possible. This is no surprise and it is in accordance with standard architecture where power distribution
systems are organized into a two level hierarchy.

However, in this formulation, we have not considered the role of failures and the fact that not all paths are
active at the same time. In fact, the result of the synthesis problem from Step 1, may require the same load
to be powered by more than one generator to satisfy reliability constraints. This set of generators are not
connected to the load at the same time, otherwise they would be also connected to each other violating on of
the constraints of our platform. For this reason, the power distribution synthesis step must be preceded by a
partitioning algorithm that generates sub-sets of the connectivity requirements Y = {yij} from Step 1 under
fault conditions. This problem can be cast into a bin packing problem that aims at generating one sub-set
YF ⊂ Y for each fault condition such that all loads are powered and generator efficiency is maximized. The
power distribution system design can then be formulated as an optimization problem with the additional
constraint that for each pair of generators, the paths departing from them be disjoint. This condition will
guarantee that a contactor configuration can be found so that generators never share the same bus at the
same time. The result of Step 2 can then be used to synthesize a state machine that handles power transfers
of the electric power system.
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Assessing performance uncertainty in complex hybrid
systems

Ritesh Khire1, Sandor Becz2, Hayden Reeve3, Larry Zeidner4

United Technologies Research Center, East Hartford, CT, 06108

Complex systems are often a derivative of the current trend that dictates increased
functionality and performance. Mobile phones that provide internet access and music
players, fighter aircraft with fly-by-wire flight controls, and energy grids that monitor usage
and recommend corrective actions are a few of the examples of emerging complex systems.
There are a large number of causes that can lead to increased complexity of a system, such
as (1) increase in number of parts, (2) increase in number of interactions, and (3) integration
of multiple technologies. An increase in complexity makes these systems significantly
challenging in terms of design and optimization, resulting in large time and resource
investments. Therefore, it is typical for complex systems to use non-mature technologies that
are expected to mature along the way. However, such infusion introduces significant levels of
uncertainty, which historically have led to an explosion in development cost. In this paper,
we assess the impact of uncertainty on a complex system. Through numerical simulations,
we demonstrate that increasing complexity does not necessarily result in vulnerability of a
system to uncertainties. These results challenge the conviction held by complex system
design community, which assumes complexity and uncertainty have a direct correlation. Our
results indicate that selection of appropriate system architectures is critical for system
robustness. This should provide motivation for further research in the complex systems
arena.

I. Introduction

he past several decades have seen the infusion of significantly new technologies in a wide range of systems,
from cell phones to aerospace platforms. For example, the 787 and F-35 aircraft have incorporated more-electric

systems for functions such as cabin pressurization and flight control actuation. This technology infusion has led to
significant system architectural changes in an effort to improve the performance and capability of new platforms. As
an example, (1) low maintenance cost and higher dispatch reliability requirements have led to the adaptation of
prognostics and health management (PHM) systems, and (2) the implementation of fly-by-wire for flight control has
reduced weight and pilot work load on many platforms. However, these and other driving forces have lead to an
exponential growth in the complexity of modern aerospace platforms and a host of design and development
challenges. In this paper, we are interested in assessing the impact of performance uncertainty on complex system
design. In particular, we are interested in understanding the impact of uncertainty resulting from the infusion of
different TRL (technology readiness level) technologies.

We note that throughout the paper, aerospace systems are used as a vehicle to discuss various issues involved
with complex systems and also as an illustrative example. However, it is our tenet that the findings reported in this
paper should be equally applicable to other complex systems, although they are not explicitly discussed.

A. Complex System -- Design Challenges

Continuing the system complexity discussion, the fifth generation tactical fighter aircraft offers a good example
of the increased capability these new systems provide and also the resulting challenges. The fifth generation aircraft

1 Sr. Research Engineer, Systems, 401 Silver Ln, East Hartford, CT 06108, and AIAA Senior Member.
2 Staff Engineer, Thermal Mgt, 401 Silver Ln, East Hartford, CT 06108, and Member.
3 Staff Engineer, Thermal Mgt, 401 Silver Ln, East Hartford, CT 06108, and Member.
4 Staff Engineer, Thermal Mgt, 401 Silver Ln, East Hartford, CT 06108, and Member.
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is the only one capable of transitioning from vertical flight to supersonic cruise. The incorporation of internal stores
and a composite airframe provide superior survivability. Its design meets multi-role objectives through three
variants for Short Take Off and Vertical Landing (STOVL), aircraft carrier operations, and conventional operations.
In short, it offers 3 to 8 time the operational capability of fourth generation aircraft. This has come at the cost of
increased system complexity. Fifth generation aircraft have approximately 130 subsystems, order 105 interfaces,
and 90 percent of its functions managed by software [1]. This is a substantial growth from fourth generation aircraft
that have approximately 15 subsystems, order 103 interfaces, and 40 percent of its functions managed by software
[1]. It is interesting to note that a two order magnitude increase in interfaces (interactions) resulted from a single
order magnitude change in the number of sub-systems. Figure 1 shows a comparison between the electrical systems
of fourth and fifth generation aircraft. The reader should note the increase in the number of interactions.

(a) Fourth Generation

(b) Fifth Generation

Figure 1: Comparison of electric system architecture between fourth and fifth generation aircraft
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The large number of sub-systems and interactions involved in a complex system poses significant design and
evaluation challenges. As a result, development of complex systems is marked by large time and resource
investments. Given this behavior, it is not unusual for complex systems to introduce low TRL technologies that are
expected to be mature at the time of product launch. The introduction of composite primary structural members in
next-generation passenger aircraft is a classic example of this phenomenon.

B. Sources of Uncertainty -- Technology Maturity

The introduction of immature or new technologies introduces significant uncertainties in the development of
complex systems. This uncertainty is manifested in the form of a lack of accurate characterization of the subsystems
during the early design and selection phase. This is in addition to other well known sources of uncertainty such as
environmental conditions, evolving system requirements, etc. With the variability and uncertainty associated with
parameters in complex systems, a formal treatment of their impact on emergent behavior must be included in any
new design paradigm. This component is virtually non-existent in current design systems, particularly in early phase
design.

In this paper, we assess the impact of uncertainties on complex system selection. Through numerical simulation,
we demonstrate that the selection of good system architectures is critical to minimize the vulnerability of complex
system to the above mentioned uncertainties. In other words, selection of appropriate complex system architectures
will allow all functional requirements to be fulfilled. At the same time, the system will be robust against
uncertainties, potentially reducing development time and resource investment.

On the contrary, a non-robust system architecture would result in the inability of the design to meet increased
performance requirements while still meeting cost and schedule limitations. To illustrate the issue, consider next
generation aircraft design. The introduction of more-electric and composite aircraft technologies (low TRL) has
greatly increased the thermal management challenge on emerging and future platforms. The move to more-electric
systems has increased aircraft heat loads (avionics, power electronics, and generator heat loads). Simultaneously,
composite structures and low observable requirements have reduced the ability to reject heat from the aircraft.
Furthermore, these platforms introduce highly integrated and technology rich subsystems. The end result is a
thermal management system that may greatly limit aircraft performance and mission operability. Unless
performance uncertainties in more-electric and composite technologies are taken into consideration, the increase in
subsystem complexity and coupling can lead to significant development risks and increased development time/cost.

C. Impact of Technology Uncertainty on Development Cost

Analysis conducted by the US Government Accountability Office (GAO) of major defense acquisition programs
found that research and development costs are 42% higher than originally estimated and that the average delay in
delivering initial capability to the war-fighter is 22 months [1]. Analysis by the RAND Corporation found that the
largest component in the growth in the cost of fixed wing aircraft has come from increased complexity [2]. As
systems have become more complex they have become not only more expensive to develop, but the ability to predict
that development cost is not accurate. Managing and minimizing complexity of new system development offers the
ability to reduce both the magnitude and unpredictability of development cost. The GAO found that development
programs that had more knowledge earlier in the development cycle incurred reduced cost overruns. Specifically:
programs that start development with fully mature critical technologies experienced 30 less R&D cost growth;
programs that held system engineering reviews (requirements review, functional review, or preliminary design
review) prior to development start experienced 20% less cost growth; finally, programs that had no changes in key
performance parameter requirement had three times less cost growth than other development programs. This
statistics suggests that the impact of technology maturity (and uncertainty ensued by it) can be significant in terms of
development cost. Additionally, it also provides a motivation for evaluating impact of uncertainties in the early
stages of complex system design process.
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D. Scope of Study

From the above discussion, we observe that complex system development typically involves significant cost
and time investment. It is important to note that the exact relation between complexity and development cost is yet
to be accurately determined by the research community. However, it is typical for the development cost to be
somewhat correlated to the complexity of the system. This is notionally reflected on the left side of Error!
Reference source not found..

We also observed that uncertainty resulting from technology infusion plays a significant role in development
cost. What is not clear from the above discussion is the relationship between systems complexity and uncertainty, as
shown in Figure 2. In this paper, we focus on uncovering the role of uncertainty in complex system behavior.
Ultimately, we are interested in identifying key drivers of uncertainty that dictate complex system behavior. Such
information will be extremely valuable in the design of complex systems, as it will ensure that huge development
cost over-runs are avoided or minimized.

II. Literature Survey

In this section, we provide a brief literature survey, which is expected to motivate the reader about the research
gap. In the final manuscript, we will provide more exhaustively survey of the literature related to the role of
uncertainty in complex system.

We divide the literature survey into two sub-sections. In the first subsection, we discuss the state-of-the art in
terms of uncertainty assessment of hybrid engineering systems. These systems are of relevance and primary
importance to us. This is followed by discussion on non-engineering systems.

A. Hybrid engineering systems

There has been considerable work in defining complexity that can guide design decisions. Kim and Wilecon
[3] provide a review of complexity definitions that have been developed. These definitions cover the range of
project, product, R&D/innovation, integration, and market areas and the definitions include the following core
elements: (1) Number of parts, technologies, or functions required in a product, (2) Level of interdependency, (3)
Novelty of project, and (4) Limitations such as time to market, requirements. Other definitions have been used in the
aerospace field. AFRL’s INVENT program [4] views complexity as equivalent to the inflexibility of a design to
meet future growth requirements. That is, how tightly integrated the design space is with respect to change. Arena

Figure 2: Motivation and Scope
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et al.[2] used the term complexity loosely to refer to the increased capability of aircraft. Jones et al.[5] developed a
quantitative metric to estimate the cost of large scale systems by developing a metric based on the number of nodes
and links within a system. What is missing from the literature is the handling of uncertainty in the context of
complex systems.

B. Non-engineering Systems
System complexity metrics have a long history in the context of software quality control [6]. Typical metrics -

such as McCabe Cyclomatic Complexity Metric [7, 8] of system complexity, use the graph structure of the
underlying system in order to formulate a metric. There are a number of different studies, some of them in large
industrial concerns such as IBM and Hughes Aircraft [9], that attempt to correlate the metric with the number of
errors (and thus decreased productivity) in the code, with mixed results. Shepperd and Ince [8] analyzed the three
most widely used software complexity metrics and identified that each was poorly formulated, involved implicit
assumptions that were not characteristic of the ways in which the metrics were being applied, and had misleading or
faulty statistical validation. One of the limitations of the complexity measures for software systems (which are
largely homogenous in nature) is their applicability to the hybrid nature of engineering systems. Also, the level of
uncertainty incorporated in terms of maturity is not as significant as that in engineering system, given the shorter
development cycle for software system.

III. Evaluation of Uncertainty in Complex Hybrid systems

A. Problem Definition
We use electric power system of an aircraft as an example to evaluate the impact of uncertainty on complex

system. In this illustrative example, the system is required to satisfy the requirements listed in Table 1.

Table 1: Requirements for electric system
System Requirement Quantity at Cruise

Engine thrust 5000 lbf
Electrical power 100 kW

Cooling load 70 kW

Actuation power 10kW

Heat Sink capacity of engine 500kW

Heat Sink capacity of fuel system Proportional to flow rate

An electrical system typically consists of a number of sub-systems, which are shown in the first column of Table
2. The second column shows various technology options considered for each sub-systems. As we shall see later in
the paper, multiple system architectures can be developed by selecting (1) alternate technology choices and (2) sub-
system interactions. Generation of different system architectures is governed by different combination of sub-system
functionalities such that requirements specified in Table 1 can be satisfied. These functionalities are listed in the
third column of Table 2. We shall also see that every system architecture will have a complexity number associated
with it. In this study, the complexity of system architecture is quantified based on the number of sub-systems and the
number of interactions between them. Finally, to evaluate the effect of uncertainty on complex system, we will
introduce uncertainty in each sub-system. This uncertainty is expected to simulate performance unpredictability of
different technology options. As discussed earlier, the level of performance unpredictability is related to the
technology maturity. The final column of Table 2 shows the uncertain parameter considered in this study.
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Table 2: Technology choices available for aircraft sub-systems

Sub-System Technology options Functions+++ Uncertain parameter

Engine N/A Provide thrust Thrust specific fuel
consumption (TSFC)

Provide shaft power

Provide pneumatic power

Heat sink and source

Fuel System Shaft power input Supply metered fuel Efficiency

Electrical power input Heat sink and source

EPS- Electric power Shaft power input Supply electric power Efficiency

Heat source

ECS-Cooling Systems a) Electrical power input Provide cooling COP

b) Pneumatic power input Heat source

1. Vapor compression cycle

2. Air compression cycle

3. Heat rejection to engine

Ram Cooler Ram air operated Heat sink Efficiency

Actuation Electrical power input Provide flight control actuation Efficiency

Shaft power input Heat source

Combined electrical-shaft

B. Uncertaity evaluation process
Figure 3 shows the process that we used to evaluate the impact of uncertainty. As shown in Figure 3, we first

generate multiple architectures that have the potential to satisfy requirements. Next, a physics based model is
developed for each architecture by combining the models of individual sub-systems. This model is used to evaluate
the architecture against requirements specified in Table 1. Also, the same model is used to run Monte Carlo
simulation against the uncertain parameters described in Table 2. The Monte-Carlo simulation provides the
probability-of-feasibility for satisfying requirements. Once all the potential architectures are evaluated, they are
compared in terms of complexity and probability-of-feasibility, and an architecture is selected that offers best
compromise between the two.

In the next few sub-sections, we discuss key processes.
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C. System Architecture Generation

As discussed before, we can generate multiple system architectures by selecting different technologies and/or by
changing interactions between various sub
Evaluation (AEE) tool
potential architectures. The AEE tool uses two criteria to filter infeasible architectures: (1)
requirement and, (2) c
scope of the current paper, we will discuss its developmental details in a separate publication. Here, we only discuss
the above two criteria and the architectures that a

Figure
(a), (b), and (c) as all mechanical, partial electric, and all electric, respectively. In the all mechanical architecture,
engine drives fuel system, EPS, EC
electric architecture; engine drives EPS, which drives other unit using the generated electrical energy. In the case of
partial electric architecture, engine and EPS share the

From the above three architectures, we can see that the engine has different number of sub
with other sub
operated, which represent two distinct technology choices. Similar observations can be made about other sub
systems shown in
requirements specified in
load, and actuation power.
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From Table 2, we can observe that a number of sub-systems act as heat source or heat sink (i.e. they can either
generate heat or can absorb it). To ensure that all the generated heat is dissipated, each heat source should pair with
at least one heat sink. Without this functionality matching, the architecture may result in over-heating and failure of
aircraft system. Similar function matching can be sees in terms of energy source and sink in the three architectures
shown in Figure 4.

D. Complexity measurement of an architecture

There are many principles that describe how elements of complexity propagate and drive system cost. These
principles can be combined to form the theory for a complexity metric. Examples of complexity principles include:

 Node complexity: a system’s complexity increases as the complexity of its constituent parts increases
 Number of nodes: the complexity increases as the number of constituent parts increases
 Number of links: the complexity increases as the number of interconnections increases
 Types of links: the complexity that each type of interconnection adds to a system is based on the type of

energy/fuel/data flow
 Roll-up: a module encapsulates the complexity of the elements inside it and their interconnections with one

another and with the module’s environment
 Shared conveyance: multiple interconnections of the same energy/fuel/data flow type linking two

embedded modules may present lower complexity together than separately
 Pass-through: an interconnection passing from one embedded subsystem to another represents complexity

within those embedded systems, but little complexity in their parent system, which adds minimal value to
the flow

 Complexity isolation: clustering nodes and their interconnections into hierarchical modular clusters
localizes complexity so that other modules and higher levels may have lower complexity

 Clustering cost: while clustering is beneficial, it is balanced in the complexity metric by an associated cost

Complexity principles can be embedded in a complexity metric. For example, Jones, et al. [5] present a complexity
metric that embodies a few of these principles: node complexity, number of nodes, and number of links. Their
complexity metric is:

The node complexity principle is embodied in the distinction between three types of nodes: receivers (Nr),
transmitters (Ns), and transceivers (Ns/r), and their multiplication by three separate complexity factors, h, g and d.
The number of nodes principle is embodied in multiplication by the term (dNs/r + gNs + hNr). The number of links
principle is embodied by the term Lt. We note that the metric presented by Jones does not embody the types of links
principle. However, we can adapt it to embody this principle by changing the interpretation of Lt to represent the
sum of the complexity of each link, based on energy type.

In the current study, we implement the above complexity metric
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E. Architecture Model Development

As stated previously, we develop a physics based model for each architecture. The architecture level physics
based model primarily consists of models of individual sub-systems. In the aircraft electric system example, we used
parameterized, low-order, steady-state models for each subsystem. These low order models were deemed sufficient
(conservative to cover non-steady state effects) to evaluate each subsystem. In the final paper, we will provide more
information on the details of these models.

F. Uncertainty Analysis -- Monte Carlo Simulation

Once the architecture model is developed, it is simulated against the requirements specified in Table 1 and
uncertain parameters specified in Table 2. As noted before, the uncertain parameters represent the uncertainty in
predicting the performance of individual sub-systems. We use Monte-Carlo technique to evaluate effect of
uncertainty on complex system architectures. The architectures that do not satisfy the heat-sink requirements
specified in Table 1 are deemed infeasible.

Next, we discuss the results of uncertainty analysis on the complex system architectures considered in this study.

IV. Discussion

A. Complexity Vs Uncertainty

Figure 5 (a) shows the comparison between system complexity and probability of infeasibility for architectures
evaluated in this study. The first and important observation from Figure 5 (a) is that probability of infeasibility is not
proportional to the complexity of the architecture. In other words, a more complex system is necessarily more
vulnerable to the uncertainty associated with technology maturity. Instead, the selection of system architecture is
critical for minimizing risk associated with uncertainties.

Among the architectures evaluated in Figure 5 (a), all-electric architecture appears to be most vulnerable,
followed by the fifth generation and partial-electric architectures, respectively. From Figure 1 and Figure 4, we can
observe that these three architectures rely on varying levels of electrical energy usage, starting from highest to
lowest, respectively. On the other hand, mechanical and fourth generation architecture relies on the least amount of
electrical energy (EPS is not required to power other sub-systems).

For the five architectures studied so far, the trend suggests that inappropriate/blind infusion of electrically
operated technologies in aircraft architectures can lead to significant levels of risks. One can minimize the levels of
risks by selecting partial electric architecture, where all subsystems except fuel system are electrically operated.
However, from Figure 5 (a), partial architecture is more complex than all-electric one. The increased complexity is

(a) Complexity vs Feasibility (b) Complexity vs Fuel consumption

Figure 5: Relation between Complexity, Feasibility, and fuel consumption
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due to the mechanical interface (shaft + bearings + lubrication) between fuel system and engine in partial
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In the final manuscript, we plan to include results from more architecture analysis. The objective of further
simulations is to identify key complex system architecture parameters that can dictate its feasibility under
uncertainties and development cost, as shown in Figure 7. Such information would be important to develop an
automated exploration/optimization technique that will develop appropriate architecture.
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Architectural Enumeration & Evaluation for Identification
of Low-Complexity Systems

Lawrence E. Zeidner1, Sandor Becz1 Hayden M. Reeve1, and Ritesh Khire1

United Technologies Research Center, East Hartford, CT 06108, USA

The cost of large complex systems can be reduced by using system complexity as a cost
proxy during the initial stages of system architecting. This paper presents Architectural
Enumeration and Evaluation (AEE), a method for rapid, efficient and thorough
consideration of enormous architectural design spaces to find the best low-complexity
solutions. AEE assembles promising system architectures from any number of candidate
technologies and evaluates them relative to a set of customer-value metrics, which can
include a complexity metric as a proxy for cost. This paper also presents an example
application of AEE together with a complexity metric and a spectral graph partitioning
method, to enumerate the feasible set of architectures, and identify for each architecture its
lowest complexity hierarchical clustering of subsystems.

Nomenclature

AFRL = Air Force Research Lab
INVENT = Integrated Vehicle Energy Technology
CCI = Capability/cost index

I. Introduction

ignificant technological and architectural changes have been introduced into aerospace systems, over the past
several decades, in an effort to improve the performance and capability of new platforms. These changes have

led to an exponential growth in the complexity of modern aerospace platforms and accompanying design and
development challenges. These increases in technical complexity have been accompanied by increases in the
complexity of system requirements and organizational partnerships. Complexity in requirements stems from the
need to meet multiple present and future mission requirements. Analysis by the RAND Corporation found that the
largest component in the growth in the cost of fixed-wing aircraft has come from increased complexity. [7] As
systems have become more complex their development cost has increased and the predictability of their
development cost has decreased. Managing and minimizing complexity of new system development offers the
ability to reduce the magnitude and increase the predictability of development cost. Fundamental architectural
decisions made early in the design process have a major impact on system complexity; however, system architects
lack quantitative feedback on the complexity of their architectures.

During the early design stages of large systems, systems are architected in terms of functional subsystems (e.g.,
Electrical Power System, Environmental Control System, Auxiliary Power Unit) and their interconnections as
shown in Figure 1. This standard top-down design approach is a divide-and-conquer strategy that defines the sub-
system boundaries as an interface to decouple the overall design problem into two sequential sub-problems. The
first sub-problem is to design a system of functional subsystems based on overall system requirements, resulting in a
set of requirements for each subsystem. The second sub-problem is to design each functional subsystem in terms of
its required functionality. This approach has also enabled airframers to focus on the large-scale system-integration
problem, while outsourcing subsystem design to subcontractors, with the subsystem requirements serving as the
organizational interface. Since these two sub-problems are not really decoupled, subsystem interactions necessitate
design iteration to meet system-level requirements. Because functional subsystems are designed separately, these
iterations often occur late in the design process and are a significant cause of schedule and cost overruns.

1 Research Engineer, Thermal Management, United Technologies Research Center, 411 Silver Lane, MS 129-89,
East Hartford, CT, 06108.
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One approach to design an overall system comprised of functional subsystems (the first sub-problem) is to
enumerate and evaluate all feasible solutions to this problem, as described in [1]. This approach has typically been
avoided due to the exponential size of the design space. However, it has recently been shown that the feasible set is
actually quite sparse, many orders of magnitude smaller than the overall design space, and that generative filters can
be used to identify the entire set of feasible solutions directly, rather than searching through the design space for
feasible solutions. [1] Using this approach, each architecture in the feasible set is specified in terms of the type of
information depicted in Figure 1.

The complexity of each architecture depends not only upon its constituent technologies and its interconnections,
but also on how and to what degree the architecture is organized hierarchically into modules. Each architecture can
be decomposed into many different hierarchical configurations of modules, each with its own degree of complexity.
[2] presents the design issues pertaining to the complexity metrics suitable for hierarchical system configurations,
while [3] presents the use of spectral graph partitioning coupled with a complexity metric to find the lowest-
complexity hierarchical clustering of the subsystems.

Complexity metrics can roll up the complexity within each hierarchical module based on the complexity of its
internal elements and interconnections. The ability to quantify and thereby minimize complexity of advanced
systems throughout the design process is required. This, in turn, requires both abstract (i.e. low fidelity) complexity
metrics as a leading indicator of complexity for use early in the process during configuration selection, cost
estimation, and bidding and proposing, all the way to detailed complexity metrics for use during detailed design. [2]

System modularity is a well-known technique for reducing system complexity by clustering system elements
into modules to maximize connections within modules and minimize connections between them. [3] presents a
method for identifying a hierarchical clustering of modules to reduce system complexity. This method is able to
employ spectral graph partitioning based on an adjacency matrix that is constructed using information available

Figure 1 - An aerospace system architecture specified in terms of its functional subsystems and their
interconnections, with a complexity metric assessed for each subsystem and for the overall system.
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early in the design process, and couples this with a complexity metric, by use of the WBestCut partitioning
algorithm. [3]

The remaining sections of this paper are organized as follows. Sections II and III will define the problem and
present a solution approach. Section IV will provide an example application of this solution approach. The paper
concludes with a summary and with suggested extensions.

II. Problem Definition

This problem addresses large systems that consist of devices that embody technologies that convert, transfer, and
store energy, information and/or material, and interconnections between those devices that enable energy,
information and/or material flow. In general, these classes of devices span an extremely large and diverse set of
technology options available for consideration. To further complicate the problem, the performance characteristics
of existing technology is continually improving at different rates, and emerging disruptive technologies are changing
the overall landscape. The large and constantly changing set of options makes the prediction of a global optimum
system solution, with low complexity and thus low cost, extremely challenging.

To handle the scope of the problem within resource limitations, system engineers are usually forced to focus on a
small subset of the overall design space, an approach that typically results in incremental improvements to existing
system designs, and high cost. A more comprehensive consideration of the entire design space has the benefit of
ensuring that all intuitive and non-intuitive architectures are considered, greatly increasing the likelihood that the
global optimum low-complexity system solution is discovered early in the design cycle. Comprehensive design
space exploration provides the additional benefits of 1) providing the quantitative information necessary for data-
driven decision-making early in the design process, 2) enabling the measurement of technology gaps relative to
application requirements, 3) quantifying performance targets required for the insertion of a particular technology
into key applications, and 4) identifying the impact of new or competitive technologies on UTC applications.

The process of comprehensively considering all of the possible ways to interconnect a set of devices is called
enumeration of the design space. Usually, enumeration is not used to solve complex system problems due to the
extremely large set of possibilities that are produced.

The general problem can be expressed mathematically as a combinatorics problem of enumerating all graphs
having up to k nodes (the maximum number of devices allowed within an assembled system), for which each node
can take on n colors (the total number of candidate technologies considered), and in which there can be up to m
directed links (the number of energy, data or material flow types) in each direction, between node pairs. The design
space consists of the total number of enumerated graphs (ntotal), which we will refer to in this paper as system
architectures is at most:









 22
km

k
TOTAL nn

Therefore, if an analysis is limited to 10 candidate technologies interconnected into a system with  4 devices
and 4 energy types, enumeration of the design space would consider more than 100 billion possibilities. The
vastness of this problem substantially exceeds available computational and financial resources.

As a practical matter, however, only a small number of these 100 billion systems are feasible solutions (i.e.
physically meaningful) as illustrated in the yellow area of Figure 2. A feasible system needs to meet all specific
requirements for a given application and requires that the distinct inputs and outputs of each device are compatible
with all other elements of the system. In general, the size of the feasible solution set is many orders of magnitude
smaller than the size of the design space. Additional design-space reduction can be achieved by realizing that within
the feasible solution set, only a small percentage of system architectures can be considered “promising” in terms of
system performance relative to value metrics, while others can be considered non-competitive (i.e. feasible, but poor
performing). The Architectural Enumeration & Evaluation (AEE) process and toolset rapidly generate and identify
this promising set of system architectures using efficient filtering methodologies and an abstracted analysis
framework, thereby enabling consideration of the entire design space. Other methods that explore the design space
vs. considering it comprehensively include design synthesis methods via design structure languages and
metamodeling [4].
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the design space, and a low-fidelity analysis to identify all promising architectures in the design space. Level 2 uses
a low level of abstraction (i.e., high-fidelity modeling and optimization) to select the best concept(s) from among the
promising architectures identified at Level 1 (Figure 4).
This solution approach is not limited to two levels. Either the AEE top level may be split into multiple successive-
refinement levels, or the high-fidelity analysis may be split into multiple analysis and optimization levels, e.g.,
physics-based high-fidelity analysis, followed by higher-fidelity computational fluid dynamics analysis of flows, or
detailed multi-physics analysis and optimization.

This multi-level approach enhances the efficiency of AEE and improves the quality of assessment because, at
each successive level, the trade space is not only successively refined, but it can also be adaptively refined. This
adaptive refinement can be conducted automatically. Issues absent from the previous higher level of abstraction can
be introduced to the system model, based on which architectures are brought forward from the previous level as
promising. For example, if architectures employing batteries are selected as the most promising architectures in
Level n, then Level n+1 may include analysis of the battery chemistry, while if the architectures employing
photovoltaics are the most promising in Level n, then Level n+1 may include analysis of the concentration ratio.
For competitive technologies, adaptive refinement of technological attributes will improve the quality of assessment
by enhancing fidelity for the issues which are most important to distinguish among the best system architectures.

Technology Screening enables the quantification of technology gaps for particular applications. If an emerging
technology is not yet competitive for a particular application, it is useful to know how far its performance
parameters would need to be improved for it to become competitive. Technology gap analysis is useful because it
enables decisions to be made based upon the cost and time required to advance the technology’s performance
parameters enough for the technology to become competitive for a specific application. Gap analysis shows which
performance parameters are most in need of improvement for a specific application, and whether there are multiple
parameters needing improvement or only one. The identification of multiple performance parameters requiring
improvement for a technology to become competitive avoids a common situation in which one parameter is
improved, only to reveal the existence of a second performance parameter that must also be improved, introducing
unforeseen delay and cost. Since the competitive landscape of technologies that can be focused on an application
changes continually as technologies progress, the ability to update gap analyses easily and quickly is useful.
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Figure 4: Sequential Application of the Four Elements of Technology Screening

The AEE process consist of four key elements, along with existing high-fidelity modeling methods, that provide
the functionality needed to perform Technology Screening. These four elements are the sequential application of
Architectural Enumeration, Evaluation and Visualization as sequential steps, once the Knowledge Center has been
used to define the design space, as shown in Figure 4. This paper focuses on the AEE process within Technology
Screening since various types of high-fidelity modeling (Level 2) are already well understood.

A. Knowledge Center
The Knowledge Center is an organization’s central repository for tracking technology attributes both in the form

of descriptions and models. It ensures a consistent basis for analysis and proposals, and is integrated with the other
Technology Screening elements so that it is quick and convenient to use. The first step in Technology Screening is
to use the Knowledge Center to determine and specify which technologies are relevant for the application.

Once Technology Screening has been used to determine technology gaps for specific applications, these gaps
can be recorded in the Knowledge Center so that when a technology’s performance parameters progress to close this
gap, appropriate organizational work-flow messages can be generated. For example, if Technology Screening
shows that current Li-ion battery technology has insufficient volumetric energy density for an aerospace application,
then the technology gap can be quantified; the threshold of volumetric energy density required for Li-ion battery
technology to be competitive for that aerospace application can be determined and recorded. This value can be
updated whenever relevant inputs are changed. As technology performance parameters are being continually
updated, when the level of Li-ion battery volumetric energy density nears the recorded threshold, the Knowledge
Center can alert the relevant individuals within the organization about this change, so that they can be prepared to
act quickly on this opportunity. With many applications and emerging technologies, this alert service can enable
organizational agility in the face of accelerating change.

The Knowledge Center includes the following types of information:

1. Device Characterization
Each technology is embodied as a device along with qualitative descriptions and quantitative performance

attributes and computational models to evaluate them. Qualitative descriptions of technologies include
identification of fuel and energy types that are potential inputs and outputs for each technology, e.g., an electric
motor accepts electric power as an input and produces shaft power as an output. Quantitative models for a
technology may take the form of performance parameters, (e.g., power density, conversion efficiency or cost), a
response function representing variation in a performance attribute as a function of known quantities, (e.g.,
conversion efficiency as a function of part load, temperature or altitude), or a table of data points for interpolation
(e.g., empirical test data). Devices are organized hierarchically in the Knowledge Center by increasing level of
specificity (e.g., a tree structure including a generic gas compressor at level n, positive displacement and dynamic
compressors at level n+1, and as children of positive displacement compressors, reciprocating and rotary
compressors at level n+2). Each level of device description inherits the attributes of its parent device, so that only
those attributes that are different need specification.

This organization of device information by increasing level of specificity and this inheritance assumption
simplify the task of adding a device to the Knowledge Center, simplify the task of selecting all relevant devices for a
specific application, and provide a mechanism for automating adaptive refinement.

One approach to automating adaptive refinement is to leverage the hierarchical nature of the device tree in the
Knowledge Center, so that the early levels begin with relatively generic devices, and then, based on which devices
are involved in promising architectures, more specific devices can be substituted automatically at subsequent levels.
For example, a generic heat engine may be assumed at Level n. If architectures including the generic heat engine
are selected as most promising, the corresponding Level n+1 architectures may each have different types of heat
engines substituted (e.g., Otto, compression, rotary, Brayton, …). This approach is adaptive in the way in which it
applies refinement, because it uses the results of the previous level of refinement to determine where to apply the
next level of refinement. For example, if architectures including the Otto engine are selected as most promising in
Level n+1 as opposed to the other types of heat engines, the corresponding Level n+2 architectures may each have
different types of Otto engines substituted (e.g., radial, V, inline, horizontal piston, opposed piston, …), while if the
type of Otto engine was not a distinguishing feature at Level n+2 (all Otto engines performing roughly the same as
one another), no further differentiation among Otto engines would be considered at Level n+3.
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Certain applications seek to compare technology embodied in specific commercially available devices with all
possible embodiments of those and other technologies. From a commercial perspective, this enables an organization
to understand the competitive landscape in which its products and those of its existing competitors exist. Within the
Knowledge Center, in the hierarchy of devices, specific commercially available embodiments exist as children
beneath their generic types.

2. Load characterization
Load characterization describes application performance requirements. Loads can take the form of a single

power level that must be achieved, or a power profile that must be delivered over time. For example, a rotorcraft
power load could be expressed as a profile of shaft power level vs. flight state (e.g., hover, level-flight, climb,
descent).

3. Filters
Filters describe inherent device constraints and application constraints. Each type of device is capable of

accepting a limited set of energy types as input and is capable of providing a limited set of energy types as output.
Application constraints take many forms so filters may represent a wide variety of issues. For example, the design
space may include a variety of possible fuels; however, an application constraint may be that at most one logistical
fuel can actually be used. Other application-constraint filters may describe the number of instances of devices
embodying specific technologies (e.g., at most two engines), may describe which technologies are compatible and
thus may be used within the same system, or may specify that at most one device may provide each energy type to
another device. A sufficiently comprehensive and flexible set of configurable filter primitives are needed to enable
expression of all relevant constraints in a simple and direct manner.

4. Application Value Metrics
Value metrics are the parameters of an architecture that drive its value (e.g., weight, volume, installed cost,

operating cost, environmental impact, risk). These metrics characterize the most important drivers of value in an
energy system. If their relative importance is known quantitatively, it can be used to form a single objective
function for the energy system.

B. Architectural Enumeration
Architectural Enumeration consists of algorithms that consider all possible architectures in the design space and

filter out those that are infeasible because they violate requirements or restrictions. Architectures are represented as
combinations of interconnected devices that embody energy-system technologies, such as engines, generators,
motors, storage devices (e.g., batteries), and waste energy recovery devices (e.g., bottoming cycles). This
modularity simplifies description of new technologies. The enumeration algorithm enables consideration of all
possible combinations of devices and ways to interconnect them to create an energy system. This may suggest
innovative and non-intuitive architectures that have not yet been contemplated.

Architectural Enumeration uses filters to rapidly and efficiently pare down the design space by excluding
architectures that violate network-integrity and application constraints. Network-integrity constraints ensure the
logical connectivity of an energy system. As specified in the Knowledge Center, each device is capable of accepting
a limited set of input energy types (e.g., JP-8 or diesel fuel, electric power, shaft power), and likewise, is capable of
providing a limited set of output energy types. Network-integrity filters reduce the design space by enforcing these
input and output constraints by ensuring that if an output of device A is connected to an input of device B, then that
connection has a single energy type which is both an acceptable output of device A and an acceptable input of
device B (e.g., engine shaft power output cannot be supplied as input to a chemical battery). Other qualitative
network integrity filters include the following: ensuring that all available system inputs are used as an input of at
least one device, ensuring that all desired system outputs are provided by at least one device, and ensuring that no
subsets of the network are isolated “islands” operating without an energy source. Application constraints are
specified in the Knowledge Center and applied during Architectural Enumeration (e.g., at most, one logistical fuel).

There are two possible implementations of filters, evaluative and generative. Evaluative filters require that an
architecture be generated, and then proceed to evaluate its feasibility according to the application constraints.
Generative filters simply avoid generation of infeasible architectures. Consequently, generative filters are
computationally far more efficient than evaluative filters. However, implementation of evaluative filters is
straightforward, while implementation of generative filters requires understanding of the problem structure, so that it
can be used to avoid generating infeasible architectures. Computational speed is maximized by using generative
filters. Figure 5 shows the decrease in computational time that has been achieved via generative filtering in an
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HVAC/CHP conceptual design application (e.g., a design space with 1074 architectures reduced to a feasible set size
of 278 architectures).

Figure 5: Effect of Filtering on Reducing Feasible Set Size

The output of Architectural Enumeration is a set of all feasible architectures. This set is typically many orders of
magnitude smaller than the design space. This sparseness is what enables generative filters to be so effective at
reducing computational time for Architectural Enumeration.

C. Architectural Evaluation
All feasible architectures that are identified by Architectural Enumeration are evaluated on selected metrics (e.g.,

complexity, efficiency, weight, operating cost, and technology readiness) using low fidelity device models to ensure
speed. However, it is worthwhile to distinguish between “apparent feasibility” which is what filtering assesses, and
“actual feasibility” which can only be assessed by a combination of qualitative filtering and quantitative evaluation.
For example, an application constraint of total system weight <500 lbm cannot be assessed qualitatively. Assessing
this constraint requires a system energy balance to be evaluated, resulting in knowledge of the power flowing along
each device interconnection, from which the total power into each device can be computed, from which the devices
can be sized, from which their power densities and/or energy densities can be used to compute their individual
weights, from which the total system weight can be computed and compared with the 500 lbm constraint.

The most promising architectures are identified, based on the value metrics (e.g., system complexity, weight,
volume, environmental impact). If the application’s value metrics can be combined quantitatively into a single
objective function, then this can be used to rank candidate architectures. If there is no intuition regarding the
relative importance of value metrics, then their Pareto frontier can be explored to understand the which design
choices are the most important drivers of value.

Uncertainty analysis could be applied to determine the robustness of promising architectures to variations in
device attributes, application constraints, ambient conditions and relative value-metric weights. Architectures could
be compared based not only on their best possible system performance, but also on their average system
performance over an expected range of uncertain device performance, conditions and uncertain relative importance
of value metrics. Sensitivity analysis could be applied to determine which design parameters have a strong
influence on the architecture’s value. The results of sensitivity analysis can be used to guide efforts to better
characterize those parameters that have the greatest influence. Analysis management could avoid the need to re-run
prior analyses by storing the results and conclusions of analyses and making them easily accessible. This trade of
storage capacity vs. computational capacity depends on their relative availability and cost.

An interface between successive levels within Technology Screening would ease the transition of information,
enabling more promising architectures to be evaluated with higher fidelity. At the interface between each level and
the next layer, this involves automatically generating higher-fidelity system models, based on the devices included,
their interconnection, higher-fidelity device models stored in the Knowledge Center, and initial conditions estimated
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Table 2- Inputs: Energy, fuel and data flows

from the lower-fidelity evaluation results (e.g., power levels of devices, and their sizing). A user interface would
enable an analyst to specify properties that were abstracted out of the lower-fidelity models, but which are precisely
the higher-fidelity elements that must be added to create a higher-fidelity system model.

D. Architectural Visualization
A graphical display enables rapid visualization of device configuration, interconnection, and system inputs and

outputs as illustrated in Figure 1. The graphical user interface is helpful to understand the evaluation results and
interpret the advantages and disadvantages of particular technologies and architectural features. If there is
insufficient understanding of the application to create a single objective function, then the application can be
considered as a multi-objective problem, and a Pareto frontier can be visualized to enable interpretation of the
evaluation results so that intuition can be developed about why particular architectures are valuable.

IV. Example Application

The example application is drawn from aircraft design and focuses on power and thermal management. The
system is described in terms of a set of subsystems and their interconnections via energy, fuel and data flows,
including flows to and from the rest of the aircraft.

A. Architectural Enumeration
There are seven subsystems, which are shown in Table 1:

There are 15 types of energy, fuel and data flows (listed in Table 2 in order of decreasing complexity):

Each flow has a name, may be a form of power, may be an available system input or a desired system output, has
a link color (for display on the architectural layout), has a total complexity (according to the Link Types complexity
principle), and has a breakdown of that total complexity into the complexity to send, convey and receive that type of
flow.

The system requirements and constraints are:

Table 1- Subsystems, their functionality and complexity
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 Available System Inputs:
o Fuel
o Ram Air

 Required System Outputs:
o Electric Power
o Cooling
o Flight Control

 Required Flows:
o Fuel System –(Metered Fuel) Engine
o Fuel System –(Metered Fuel) APU
o EPS –(Start Shaft Power) APU
o APU –(Aux Shaft Power) EPS

 Prohibited Flows:
o Engine –(Heat) ECS
o Engine –(Heat) Ram Cooler
o Fuel System –(Heat) Engine
o EPS –(Heat) Engine
o EPS –(Heat) ECS
o EPS –(Heat) Ram Cooler
o Actuation –(Heat) Engine

 Each flow has a name, may be a form of power, may be an available system input or a desired system
output, has a link color (for display on the architectural layout), has a total complexity (according to
Link types complexity principle), and has a breakdown of that total complexity into the complexity to
send, convey and receive that type of flow.

Each type of subsystem can accept certain types of energy, fuel and data flows (listed in Table 3):

Table 3 - Subsystem flow inputs
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Figure 6 - A feasible architecture

Likewise, each type of subsystem can produce certain types of energy, fuel and data flows (listed in Table
4):

The architectural enumeration for this problem produced ~20,000 feasible architectures in less than 1 minute.
These architectures pass all of the specified requirements and constraints, so they are feasible in the sense that they
are configured feasibly. At this point in the process, neither complexity nor other value metrics such as
performance, weight, durability, etc. have been evaluated.

Figure 6 illustrates one of the feasible architectures. It will be examined further below.

Table 4 - Subsystem flow outputs
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B. Complexity Metric
A complexity metric can be defined based on a set of complexity principles, such as those shown in Table 5.

Table 5 - Complexity Principles

Principle Description Diagram
Node complexity A system’s complexity increases as the

complexity of its constituent parts increases.

Number of nodes The complexity increases as the number of
constituent parts increases.

Number of links The complexity increases as the number of
interconnections increases.

Types of links The complexity that each type of
interconnection adds to a system is based on
the type of energy/fuel/data flow.

A complexity metric defined in this manner can be applied to an architecture, such as the one shown in Figure 6,
by combining the complexity introduced according to each complexity principle, with the result shown in Figure 7.
Note that in Figure 7 the complexity metric values for each subsystem are shown in the lower right corner of each
subsystem box, and that the overall complexity metric value for the system architecture is shown in the lower right
corner of the overall system box.
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As described in [15], an architecture can be hierarchically clustered, using spectral graph partitioning methods
coupled with complexity principles. Figure 8 shows a clustered version of the architecture shown in Figure 6 with a
significantly lower complexity.

Figure 8 - Aerospace power & thermal management architecture clustered
using BestWCut result.

Figure 7 - Complexity metric applied to a feasible architecture

F.5. ARCHITECTURAL ENUMERATION

425
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)



V. Conclusion

A method for enumerating the sparse feasible subset of very large architectural design spaces has been described.
This method is intended to be used at the start of architecting large systems so that all feasible architectures are
considered and the best low-complexity (low cost) architecture can be found. This method for finding feasible
architectures differs from prior methods in that it is comprehensive, considering the entire design space, rather than
searching through the design space, exploring only a subset of the possible architectures; AEE ensures that all
feasible architectures are found in a timely fashion.
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Design Issues for a Bottom-Up Complexity Metric Applied to
Hierarchical Systems

Lawrence E. Zeidner1, Sandor B. Becz,1 Hayden M. Reeve1, and Ritesh Khire1

United Technologies Research Center, East Hartford, CT 06108, USA

The cost of large complex systems can be reduced by using system complexity as a cost
proxy during the initial stages of system architecting. This requires evaluation of system
complexity in terms of information available during those early stages. This paper presents
the design of complexity metrics in terms of the aspects of systems that drive system
complexity. System modularity is a well-known technique for reducing system complexity
by clustering system elements into hierarchical modules. This paper also explains how
complexity metrics can be designed to be applicable for hierarchical systems.

Nomenclature

AFRL = Air Force Research Lab
INVENT = Integrated Vehicle Energy Technology
CCI = Capability/cost index
Nt = total number of nodes
Lt = total number of links

I. Introduction

ignificant technological and architectural changes have been introduced into aerospace systems, over the past
several decades, in an effort to improve the performance and capability of new platforms. These changes have

led to an exponential growth in the complexity of modern aerospace platforms and accompanying design and
development challenges. These increases in technical complexity have been accompanied by increases in the
complexity of system requirements and organizational partnerships. Complexity in requirements stems from the
need to meet multiple present and future mission requirements. Analysis by the RAND Corporation found that the
largest component in the growth in the cost of fixed-wing aircraft has come from increased complexity1. As systems
have become more complex their development cost has increased and the predictability of their development cost
has decreased. Managing and minimizing complexity of new system development offers the ability to reduce the
magnitude and increase the predictability of development cost. Fundamental architectural decisions made early in
the design process have a major impact on system complexity; however, system architects lack quantitative
feedback on the complexity of their architectures.

During the early design stages of large systems, systems are architected in terms of functional subsystems (e.g.,
Electrical Power System, Environmental Control System, Auxiliary Power Unit) and their interconnections as
shown in Figure 1. This standard top-down design approach is a divide-and-conquer strategy that defines the sub-
system boundaries as an interface to decouple the overall design problem into two sequential sub-problems. The
first sub-problem is to design a system of functional subsystems based on overall system requirements, resulting in a
set of requirements for each subsystem. The second sub-problem is to design each functional subsystem in terms of
its required functionality. This approach has also enabled airframers to focus on the large-scale system-integration
problem, while outsourcing subsystem design to subcontractors, with the subsystem requirements serving as the
organizational interface. Since these two sub-problems are not really decoupled, subsystem interactions necessitate
design iteration to meet system-level requirements. Because functional subsystems are designed separately, these
iterations often occur late in the design process and are a significant cause of schedule and cost overruns.

One approach to design an overall system comprised of functional subsystems (the first sub-problem) is to
enumerate and evaluate all feasible solutions to this problem, as described in [1]. This approach has typically been

1 Research Engineer, Thermal Management, United Technologies Research Center, 411 Silver Lane, MS 129-89,
East Hartford, CT, 06108.
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avoided due to the exponential size of the design space. However, it has recently been shown that the feasible set is
actually quite sparse, many orders of magnitude smaller than the overall design space, and that generative filters can
be used to identify the entire set of feasible solutions directly, rather than searching through the design space for
feasible solutions. [1] Using this approach, each architecture in the feasible set is specified in terms of the type of
information depicted in Figure 1.

The complexity of each architecture depends not only upon its constituent technologies and its interconnections,
but also on how and to what degree the architecture is organized hierarchically into modules. Each architecture can
be decomposed into many different hierarchical configurations of modules, each with its own degree of complexity.
This paper presents the design issues pertaining to the complexity metrics suitable for hierarchical system
configurations. These metrics roll up the complexity within each hierarchical module based on the complexity of its
internal elements and interconnections.

The ability to quantify and thereby minimize complexity of advanced systems throughout the design process is
required. This, in turn, requires both abstract (i.e. low fidelity) complexity metrics as a leading indicator of
complexity for use early in the process during configuration selection, cost estimation, and bidding and proposing,
all the way to detailed complexity metrics for use during detailed design. This paper will focus on the design of
abstract complexity metrics used early in system architecting.

When we make decisions involving system architectural alternatives, it is important to evaluate how difficult the
resulting product-development task may be and how long it may take. This evaluation is crucial in allocating

Figure 1 - An aerospace system architecture specified in terms of its functional subsystems and their
interconnections, with a complexity metric assessed for each subsystem and for the overall system.
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resources and in determining the appropriate cost and timing of product development. System complexity metrics
have a long history in the context of software quality control [7]. Typical metrics - such as McCabe Cyclomatic
Complexity Metric [4, 6] of system complexity, use the graph structure of the underlying system in order to
formulate a metric. There are a number of different studies some of them in large industrial concerns such as IBM
and Hughes Aircraft [2] that attempt to correlate the metric with the number of errors (and thus decreased
productivity) in the code, with mixed results. Shepperd and Ince analyzed the three most widely used software
complexity metrics and identified that each was poorly formulated, involved implicit assumptions that were not
characteristic of the ways in which the metrics were being applied, and had misleading or faulty statistical
validation. [6]

There has been considerable work defining complexity[14] but less effort on constructing a quantitative metric
that can guide design decisions. Kim and Wilemon [5] provide a review of complexity definitions that have been
developed. These definitions cover the range of project, product, R&D/innovation, integration, and market areas
and the definitions include the following core elements:

 Numbers: Number of different disciplines or departments involved. Number of parts, technologies, or
functions required in a product.

 Degree of Interdependency: Level of interdependency among the domains, functions, or disciplines
involved.

 Intricacy or difficulty: Novelty of project (minor modifications and growth and derivative versions versus
clean sheet designs with untested technologies)

 Limitations: A compounding factor that can increase the complexity in the areas above. Examples
include: limited time to market, tight performance requirements (weight, thrust), stringent constraints
(thermodynamic limitations).

Other definitions have been used in the aerospace field. AFRL’s INVENT program[8] views complexity as
equivalent to the inflexibility of a design to meet future growth requirements. That is, how tightly integrated the
design space is with respect to change. Arena et al.[10] used the term complexity loosely to refer to the increased
capability of aircraft. Jones et al. [9] developed a quantitative metric to estimate the cost of large scale systems by
developing a metric based on the number of nodes and links within a system. To effectively manage complexity in
the future domain specific standard measures of complexity are needed that would allow competing offerings to be
ranked, similar to the cost capability index (CCI) used to quantify the capability of propulsion systems. More
importantly, identifying the key attributes and contributing factors that create or amplify complexity (and therefore
development cost and risk) is a key requirement to being able to manage and minimize complexity.

Prior art in the design of complexity metrics includes metrics for:
 software quality control,
 complex task environments, notably air-traffic control: Histon defined structure-based abstractions about

the complex environment that can be used to improve air-traffic controller’s situational awareness so
that they can plan and project future conditions. [11] These abstractions are akin to our complexity
drivers in that they form a language with which to describe high-level features that drive the level of
complexity. They both form the basis for quantitative analysis and combination into a single metric,
and form the kernel of a complexity-simplification approach, if they’re new abstractions to those
performing the tasks.

 Supply chains: Abbasi [12] describes these complex socio-technical, chaotic, self-organizing, non-
deterministic systems based on properties described in Pavard.

The remaining sections of this paper are organized as follows. Sections II and III will define the problem and
present a solution approach. Section IV will provide an example application of this solution approach. The paper
concludes with a summary and with suggested extensions.

II. Problem Definition

The technical challenge is to formulate a system complexity metric that serves as a good early proxy for total
system cost, so that total system cost can be balanced against other value metrics for early architecture decisions.
System architects have ways to predict performance, weight, volume and other value metrics, but complexity as a
proxy for total system cost as well as development cost and development time are needed.

Early in the design of an overall system comprised of functional subsystems, the subsystems themselves have not
yet been designed or sized. The information available about each subsystem consists of the sub-system technology
and its energy, fuel and/or data input and output flows. The information available about the interactions among the
sub-systems, and between the subsystems and the system’s environment, consists of the type of energy, fuel or data
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flowing through each interconnection. This information, together with the modular system hierarchy is the
information available to a complexity metric.

III. Solution Approach

Shepperd and Ince [6] describe the five specific components of a well-formed model:
1. Purpose: the purpose of the model must be known to determine which factors must be included and

which can be excluded.
2. Theory & Relationships: the model embodies a theory, an idea, expressed in the form of relationships

established between inputs and outputs, and may involve parameters.
3. Measurement & Prediction: the measurement process describes how reality maps into the model’s inputs,

and the prediction process describes how the model’s outputs map back into reality.
4. Limitations: explicit assumptions regarding applicability of the relationships to specific domains.
5. Veracity: the confidence that one can have that the model will accurately predict real-world behavior.

The solution approach for designing a bottom-up complexity metric for hierarchical systems will be described in
terms of these five components in the following sections.

A. Purpose
The purpose of a complexity metric, used early in system architecting, is to provide guidance to support design

decisions that will select lower-complexity architectures, to result in lower system development time and cost and
lower total system cost.

The context in which this complexity metric is intended to be used is early in the design process, when basic
system architectural alternatives are being considered. The complexity metric is one of three techniques that are
employed together to reduce the enormous design space to a manageable size before proceeding to a lower level of
abstraction, using higher fidelity models:

 Architectural enumeration [1]: The entire architectural design space is considered rapidly to identify the
feasible set of architectures that meet configuration requirements. The architectural design space is
enormous, but the feasible set is extremely sparse. Generative filters are used to rapidly consider the
entire design space and identify the entire feasible set. The architectural design space is specified by
identifying the technology alternatives at the relevant level (e.g., device, subsystem), the
energy/fuel/data flow types between devices or subsystems, and the energy/fuel/data inputs and outputs
of each technology alternative. Architectural enumeration results in a list of feasible architectures.

 Spectral graph partitioning [Spectral]: Spectral methods are applied iteratively to each architecture to cut
the architecture into hierarchical modular clusters that minimize the complexity of that architecture as
measured by the complexity metric. The partitioning method enables principles of cost due to
complexity to be embodied in an adjacency matrix used as input. The adjacency matrix describes the
energy/fuel/data flows between devices or subsystems. Principles involving flows that cut across
multiple levels in the hierarchy are embodied in the way those flows are quantified as the spectral
methods are applied iteratively to create the hierarchy.

 Complexity metric: A complexity metric embodies principles of cost due to complexity. This is the
subject of this paper.

B. Theory & Relationships
There are multiple principles that describe how elements of complexity drive system cost. These principles are

combined to form the theory for a complexity metric. The following are examples of principles believed to be
relevant to aerospace systems; however, the point of this paper is not the specific principles themselves, but how
such principles can be combined to create a complexity metric that embodies them.

 Node complexity: A simple principle describing the way in which complexity propagates through a
system is that a system’s complexity increases as the complexity of its constituent parts increases. For
example, a system of three interconnected devices, each of complexity 10 has lower complexity than an
otherwise identical system of three interconnected devices, each of complexity 30, as shown in Figure
2.
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Figure 3 - Number of nodes

 Number of nodes: Another simple principle describing complexity propagation is that, at any hierarchical
level within a system, the complexity increases as the number of constituent parts increases. Applying
this principle at the device level, a subsystem consisting of three interconnected devices of complexity
10 has lower complexity than an otherwise identical subsystem consisting of six interconnected devices
of complexity 10, as shown in Figure 3.

 Number of links: At any hierarchical level within a system, the complexity increases as the number of
interconnections increases. Applying this principle at the system level, a system of three nodes
interconnected by 2 links has lower complexity than an otherwise identical system of three nodes
interconnected by 6 links, as shown in Figure 4.

 Types of links: Within an architectural description, interconnections are used to represent flows of
energy, fuel, or data between devices or subsystems. Implementing these different types of flows
requires different methods, each with its own level of complexity and associated cost. Consequently the
complexity that each type of interconnection adds to a system can be determined based on the type of
energy/fuel/data flow. For example, flows of pneumatic power require relatively simple air pipes from
the interconnection source to the target, while flows of shaft power require strong metal shafts from
source to target, along with various types of bearings along the path, and often gearboxes to achieve
appropriate rotational speed for transmission, as shown in Figure 5.

Figure 4 - Number of links

Figure 5 - Types of links

Figure 2 - Node complexity
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 Roll-up: Within the hierarchical modular clustering of an architecture, a module encapsulates the
complexity of the elements inside it and their interconnections with one another and with the module’s
environment. Complexity of a module is based on various principles in combination. At a given level
within the hierarchy, a module’s complexity acts as an interface between two levels. At the lower level,
the module’s complexity is determined as an output. At the next-highest level, the module’s complexity
is assumed as an input, regardless of how its configuration led to its complexity, as shown in Figure 6.

 Shared conveyance: In hierarchical modular systems, multiple interconnections of the same
energy/fuel/data flow type may link two embedded modules, as shown in Figure 7. For example, at the
system level, shaft power may link an engine to another embedded module, such as a combined
Environmental Control System and Auxiliary Power Unit. It may be possible to combine the two flows
at the source, by means of a gearbox, convey one shared shaft-power link from source to target, and
then decompose that combined shaft power into two separate flows for the ECS and APU, by means of
another gearbox. For links travelling relatively long distances on an aircraft from source to target, this
shared conveyance may reduce cost significantly and present other benefits such as weight reduction,
while for very short distances, it may not be worth the cost of the gearboxes. For data flows,
multiplexing is an example of shared conveyance of multiple data channels along one physical pathway,
with associated mux/demux costs at the source/target.

Figure 6 - Roll-up

Figure 7 - Shared conveyance
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Figure 9 - Complexity isolation

 Pass-through: In hierarchical modular systems, an interconnection may pass from one embedded
subsystem to another as shown in Figure 8. At the hierarchical level in which both subsystems are
embedded and interconnected, little or no value-added work is done to the flow, so little or no cost is
added. These flows are simply passing through from a lower level, and to a lower level, surfacing only
to link across the system. Consequently, at this level, the interconnection link adds relatively little
complexity to the system.

 Complexity isolation: Clustering nodes and their associated interconnections into hierarchical modular
clusters has the advantage of localizing complexity so that other modules and higher levels may have
lower complexity as shown in Figure 9.

 Clustering cost: While complexity isolation due to clustering is beneficial, each module defines an
interface, requires design, test, and sustainment, along with associated costs, and imposes constraints
that limit flexibility later in the product life cycle. So while clustering is beneficial, it must be balanced
in the complexity metric by an associated cost, so that an optimum degree of clustering will exist for a
given architecture.

Complexity principles can be embedded in a complexity metric. For example, Jones, et al. [9] present a
complexity metric that embodies a few of these principles: node complexity, number of nodes, and number of links.

Figure 8 - Pass-through
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Their complexity metric is:

The node complexity principle is embodied in the distinction between three types of nodes: receivers (Nr),
transmitters (Ns), and transceivers (Ns/r), and their multiplication by three separate complexity factors, h, g and d.
The number of nodes principle is embodied in multiplication by the term (dNs/r + gNs + hNr). The number of links
principle is embodied by the term Lt.

The metric presented by Jones does not embody the types of links principle. However, we can adapt it to
embody this principle by changing the interpretation of Lt to represent the sum of the complexity of each link, based
on energy type. For example, we can assume that the relative complexity of the various types of links is:

5: Shaft power
4: Electric power
3: Fuel
2: Heat
1: Pneumatic power

Figure 10 shows two systems that have significantly different scores on Jones’ complexity metric, since one has
many more links than the other. However, both of these systems have the same score on the metric adapted above to
embody the types of links principle, since one had many simple links and the other had few, but complex links.

Figure 11 shows two systems that have identical scores on Jones’ complexity metric, since they have the same
number of nodes and links. However, these two systems have significantly different scores on the metric adapted
above to embody the types of links principle, since one has simple links and the other has complex links.

Figure 10 - Two systems that score differently on Jones metric and identically once the metric
is adapted to embody the types of links principle.
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A bottom-up complexity metric rolls up sub-system complexity, at each level, to the next highest level. Figure
12 shows a system without any hierarchical modular clustering. The subsystem complexities roll up to the system
level and are computed along with the link weights. The complexity is noted in the bottom left of each subsystem
and module.

Figure 11 - Two systems that score identically on Jones metric and differently once the metric is
adapted to embody the types of links principle.

Figure 12 - System with bottom-up metric roll up but no hierarchical modular
clustering.
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Figure 13 - System with bottom-up metric roll up and one module.

Figure 13 shows the same system with one modular cluster and Figure 14 shows the same system with three
hierarchical modular clusters.

To summarize, a set of principles was identified that represent system features that drive complexity and
ultimately system cost. These principles are representative, but not exclusive. These principles were embodied in a
complexity metric that explicitly included node complexity. The complexity metric was able to be rolled up from
the lowest level up to the system level due to the explicit inclusion of node complexity in its formulation.

Figure 14 - System with bottom-up metric roll up and
three hierarchical modules.
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C. Measurement & Prediction
The complexity metric has the following inputs: node complexity, link complexity, number of nodes, number of

links, situation characterized as an opportunity for shared conveyance (multiple links of the same flow type between
the same two embedded modules), and situation characterized as a flow through (links between two embedded
modules). These can be recognized by laying out the architecture and noting the hierarchical modular clustering if
any.

The computed complexity metric output is a result that can be used in different ways, depending upon its
veracity (see section E below). If the metric is expressed directly in terms of cost and has been adequately validated,
then its results can be used as direct predictions within suitable error bounds. The metric may be expressed in terms
of complexity rather than cost, and may indicate the relative complexity between alternative architectures, without
the need to have strong absolute accuracy.

D. Limitations
There are assumptions underlying the theory, relationships, measurement and prediction. These assumptions

limit the applicability of the results, though these limitations may not necessarily be unduly constraining for the
intended use of the metric. For example, Jones’ metric explicitly assumes that all nodes belong to one of three
distinct classes: receivers, transmitters and transceivers. This explicit assumption is meaningful for the class of DoD
programs that Jones used to build the metric; however, the assumption does not apply to the class of aerospace
power and thermal management systems, which are comprised of nodes such as engines, fuel systems, and
actuation. An implicit assumption underlying the Jones’ metric is that all links flow data. That assumption is
another one that is not applicable to aerospace power and thermal management systems, which involve flows of fuel,
heat, shaft power, pneumatic power, etc. An explicit assumption stated in the explanation of the shared conveyance
principle is that the benefit of shared conveyance depends to some degree on the distance between source and target.

E. Veracity
Veracity refers to the degree of confidence that one should have in the results of the metric when it is applied

within the range of limitations described above (section D). For example, Jones’ metric was created statistically
based upon data from a variety of DoD programs. Jones provides an error quantification along with the metric.
This can be used to understand the resolution of prediction accuracy so that the metric is not used to distinguish
alternatives that are more similar than this level of accuracy. The principles listed above and the resulting adapted
metric have not been validated and should therefore not be used for decisionmaking until validation has been
conducted. They are intended to be illustrative of how complexity principles can be embodied in a complexity
metric.

IV. Example Application

The example application is drawn from aircraft design and focuses on power and thermal management. The
system is described in terms of a set of subsystems and their interconnections via energy, fuel and data flows,
including flows to and from the rest of the aircraft.

A. Architectural Enumeration
There are seven subsystems:

Table 1- Subsystem functions and complexity
Subsystem Function Complexity

Engine the focus here is on power for the other subsystems (not thrust). 20
Fuel System meters fuel 8
Electric Power
System

provides electric power for subsystems and aircraft hotel loads 10

Environmental
Control System

provides aircraft cooling 10

Auxiliary Power
Unit

provides auxiliary power when the Engines are not available 15

Ram Cooler provides a heat sink 4
Actuation provides flight control 8
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Table 2- Inputs: Energy, fuel and data flows

There are 15 types of energy, fuel and data flows (listed in Table 2 in order of decreasing complexity):

Each flow has a name, may be a form of power, may be an available system input or a desired system output, has
a link color (for display on the architectural layout), has a total complexity (according to the Link Types complexity
principle), and has a breakdown of that total complexity into the complexity to send, convey and receive that type of
flow.

The system requirements and constraints are:
 Available System Inputs:

o Fuel
o Ram Air

 Required System Outputs:
o Electric Power
o Cooling
o Flight Control

 Required Flows:
o Fuel System –(Metered Fuel) Engine
o Fuel System –(Metered Fuel) APU
o EPS –(Start Shaft Power) APU
o APU –(Aux Shaft Power) EPS

 Prohibited Flows:
o Engine –(Heat) ECS
o Engine –(Heat) Ram Cooler
o Fuel System –(Heat) Engine
o EPS –(Heat) Engine
o EPS –(Heat) ECS
o EPS –(Heat) Ram Cooler
o Actuation –(Heat) Engine

The architectural enumeration for this problem produced ~20,000 feasible architectures in less than 1 minute.
These architectures pass all of the specified requirements and constraints, so they are feasible in the sense that they
are configured feasibly. At this point in the process, neither complexity nor other value metrics such as
performance, weight, durability, etc. have been evaluated.
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Figure 15 - A feasible architecture

Figure 15 illustrates one of the feasible architectures. It will be examined further below.

B. Complexity Metric
A complexity metric is applied to an architecture, such as the one shown in Figure 15, by adding the complexity

introduced according to each complexity principle, with the result shown in Figure 16. For example, using the
complexity principles described in this paper, the complexity metric is computed as the following sum (Roll-up
principle): 638.06 = 0.7 + 75 + 494.11 + 68.25

 Number of Nodes: A weighting factor is applied to the number of nodes. This is a relatively small
contribution to the overall complexity since there are few subsystems and the node complexity
principle is of greater importance for this application): 0.7 = 0.1 (weighting factor) * 7 (# of nodes)

 Node Complexity: The subsystem complexity values are added: 75 = 20 + 8 + 10 + 10 + 15 + 4
 Number of Links: A weighted sum of the number of system input links, output links, and internal

links is computed, emphasizing the internal links. This weighted sum is then raised to an exponent to
reflect the exponential growth of complexity with the number of links: 494.11 = ((0.5*2: weighted #
of system input links) + (3*20: weighted # of internal links) + (0.5*3: weighted # of system output
links))^1.5 (exponential growth with weighted # of links)

 Types of Links: The flow-type complexities are added for system inputs, internal links and system
outputs: 68.25 = .5 + 64 + 3.75

o System inputs: For each type of system input flow, the receiving portion of the complexity is
used: 0.5 = (1*3*0%: receive fuel) + (1*1*50%: receive ram air)

o Internal links: For each type of internal flow, the full complexity is used: 64 = (3*4: electric
power) + (1*1: pneumatic power) + (3*5: shaft power) + (7*2: heat) + (2*3: metered fuel) +
(2*5: start shaft power) + (1*5: aux shaft power) + (1*1: aux pneumatic power)

o System outputs: For each type of system output flow, the sending portion of the complexity is
used: 3.75 = (1*4*50%: send electric power) + (1*1*0%: send cooling) + (1*0*100%: send
flight control)

 Shared conveyance: 0 (no hierarchical clustering)
 Pass-thru: 0 (no hierarchical clustering)
 Complexity isolation: 0 (no hierarchical clustering)
 Clustering cost: 0 (no hierarchical clustering)
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The result of applying the complexity metric to the architecture shown in Figure 15 is shown in Figure 16. Note
that in Figure 16 the complexity metric values for each subsystem are shown in the lower right corner of each
subsystem box, and that the overall complexity metric value for the system architecture is shown in the lower right
corner of the overall system box.

As described in [15], an architecture can be hierarchically clustered, using spectral graph partitioning methods
coupled with complexity principles. Figure 17 shows a clustered version of the architecture shown in Figure 15 with
a significantly lower complexity.

Figure 16 - Complexity metric applied to a feasible architecture
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V. Conclusion

A method for developing metrics that evaluate the complexity of large systems has been described. Such metrics
are intended to be used early in the architecting of large systems as a proxy for their eventual total system cost, as an
early means to make design decisions that reduce that total system cost. This method for developing metrics differs
from prior methods in that it uses only the information available at the earliest stages of system architecting and
represents a set of complexity principles, which can then be validated.
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System Complexity Reduction via Spectral Graph
Partitioning to Identify Hierarchical Modular Clusters

Lawrence E. Zeidner1, Andrzej Banaszuk2 and Sandor B. Becz1

United Technologies Research Center, East Hartford, CT 06108, USA

The cost of large complex systems can be reduced by using system complexity as a cost
proxy during the initial stages of system architecting. This requires evaluation of system
complexity in terms of information available during those early stages. System modularity is
a well-known technique for reducing system complexity by clustering system elements into
modules to maximize connections within modules and minimize connections between them.
This paper presents a method for identifying a hierarchical clustering of modules to reduce
system complexity. This method employs spectral graph partitioning based on an adjacency
matrix that is constructed using information available early in the design process, and
specifically employs the WBestCut partitioning algorithm.

Nomenclature

DSM = Dependency Structure Matrix, Design Structure Matrix
GA = Genetic Algorithm
BestWCut = Best weighted cut algorithm [2]
A = Adjacency matrix
Di = Node degrees (in-degree, out-degree or a combination)

T, T’ = Diagonal Weighting Vectors
H(B) = Hermitian matrix

I. Introduction

ignificant technological and architectural changes have been introduced into aerospace systems, over the past
several decades, in an effort to improve the performance and capability of new platforms. These changes have

led to an exponential growth in the complexity of modern aerospace platforms and accompanying design and
development challenges. These increases in technical complexity have been accompanied by increases in the
complexity of system requirements and organizational partnerships. Complexity in requirements stems from the
need to meet multiple present and future mission requirements. Analysis by the RAND Corporation found that the
largest component in the growth in the cost of fixed wing aircraft has come from increased complexity [44]. As
systems have become more complex their development cost has increased and the predictability of their
development cost has decreased. Managing and minimizing complexity of new system development offers the
ability to reduce the magnitude and increase the predictability of development cost. Fundamental architectural
decisions made early in the design process have a major impact on system complexity; however, system architects
lack quantitative feedback on the complexity of their architectures. [43]

During the early design stages, large systems are architected in terms of functional subsystems (e.g., Electrical
Power System, Environmental Control System, Auxiliary Power Unit) and their interconnections as shown in Figure
1- An aerospace system architecture specified in terms of its functional subsystems and their interconnections. This
standard top-down design approach is a divide-and-conquer strategy that defines the sub-system boundaries as an
interface to decouple the overall design problem into two sequential sub-problems. The first sub-problem is to
design a system of functional subsystems based on overall system requirements, resulting in a set of requirements
for each subsystem. The second sub-problem is to design each functional subsystem in terms of its required

1 Research Engineer, Thermal Management, United Technologies Research Center, 411 Silver Lane, MS 129-89,
East Hartford, CT, 06108.
2 Fellow, Control Systems, United Technologies Research Center, 411 Silver Lane, MS 129-15, East Hartford, CT,
06108.
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Figure 1- An aerospace system architecture specified in terms of its
functional subsystems and their interconnections

functionality. This approach has also enabled airframers to focus on the large-scale system-integration problem,
while outsourcing subsystem design to subcontractors, with the subsystem requirements serving as the
organizational interface. Since these two sub-problems are not really decoupled, subsystem interactions necessitate
design iteration to meet system-level requirements. Because functional subsystems are designed separately, these
iterations often occur late in the design process and are a significant cause of schedule and cost overruns.

One approach to design an overall system comprised of functional subsystems is to enumerate and evaluate all
feasible solutions to this problem, as described in [1]. This approach has typically been avoided due to the
exponential size of the design space. However, it has recently been shown that the feasible set is actually quite
sparse, many orders of magnitude smaller than the overall design space, and that generative filters can be used to
identify the entire set of feasible solutions directly, rather than searching through the design space for feasible
solutions. [1] Using this approach, each architecture in the feasible set is specified in terms of the type of
information depicted in Figure 1.

The complexity of each architecture depends not only upon its constituent technologies and its interconnections,
but also on how and to what degree the architecture is organized hierarchically into modules. Each architecture can
be decomposed into many different hierarchical configurations of modules, each with its own degree of complexity.
Complexity metrics suitable for hierarchical system configurations have been described in [41]. They roll up the
complexity within each hierarchical module based on the complexity of its internal elements and interconnections,
according to relevant principles describing complexity propagation and its relationship to cost.

This paper presents a method for determining the lowest-complexity hierarchical decomposition of a given
architecture, based on a specified hierarchical complexity metric. This method uses a spectral graph partitioning
algorithm iteratively to determine the hierarchy of modules based on the limited information available at this early
stage in the design process.

Early in the design of an overall system comprised of functional subsystems, the subsystems themselves have not
yet been designed or sized. The information available about each subsystem consists of the sub-system technology
and its energy, fuel and/or data input and output flows. The information available about the interactions among the
sub-systems, and between the subsystems and the system’s environment, consists of the type of energy, fuel or data
flowing through each interconnection. This information is used by the partitioning algorithm to determine the
lowest-complexity hierarchical decomposition of the system architecture.

System modularity has been pursued in product design because it has been expected to lead to several desirable
system benefits [3]:
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 Improved quality
 Shorter development time
 Flexibility and variety
 Risk reduction
 Cost reduction.

A related design problem, the design of product families, which are sets of products that enjoy these benefits
because they share common modules, has been an active field of study. Consequently, researchers have proposed
various ways to cluster product designs into modules. However, some of these methods depend upon information
that is not available in the early stages of system architecting described above:

 Flow-Distance Dendrograms: Holtta(14)
 Modular Function Deployment (MFD): Erixon(20)
 Interface Modeling: Andersson(19)

Other clustering methods are heuristics which require human judgement:
 DSM Relation (Heuristics): Blackenfelt(23)
 DSM Visual Inspection (Heuristics): Sosa(24)
 Visibility-Dependency (Heuristic): Yassine(10)
 Function Chains (Heuristics): Dahmus(27), Stone(13)
 Interaction-Graph (Heuristic): Kusiak(15)

Other clustering methods are based on searches of very large spaces with genetic algorithms, which lack
stopping criteria, thus finding good but not necessarily optimal solutions, and which slow down for large
combinatorial problems:

 GA Methods: Whitfield(4), Fujita(6), Whitfield(9), Kamrani(18)
 Minimal Description Length: Helmer(7), Yu (11), Wang (12)
 Multi-perspective DSM Distance-from-Diagonal: Meehan(8)

One set of clustering methods is graph partitioning which cuts a graph, consisting of nodes and edges connecting
them, into two subgraphs to minimize the interconnections between the two subgraphs. Minimum cut methods
simply minimize the number of edges connecting the two subgraphs. They tend to produce extremely imbalanced
cuts that are of little value for high-level clustering. [35] Other methods impose an additional constraint to produce
better-balanced cuts. Minimum bisection methods impose the constraint that the two subgraphs are of equal size.
This is an unnatural constraint, yields poor clustering results quantitatively, and is NP-complete computationally.
[34] Ratio cut methods minimize the ratio of the number of edges connecting the two subgraphs divided by the
product of the number of nodes in each subgraph. [36, 37] They are a better choice for this application because they
tend to produce naturally balanced and yet high-fitness cuts.

Spectral graph partitioning uses the eigenvalues and eigenvectors of an affinity matrix describing relationships
between pairs of nodes in a graph [30-32] to find the cut, e.g., a ratio cut. For this application, the affinity matrix
could be an adjacency matrix of the architecture’s directed graph describing some properties of the directed
interconnections between its subsystem nodes. The problem can be formulated as a Markov random walk along the
edges of the graph, with the affinity matrix terms interpreted as the edge flows. [40]

Most spectral graph partitioning methods assume a symmetric affinity matrix, but in general, the adjacency
matrix for a system architecture is asymmetric. Chung [29] explores the Laplacian of a directed graph, and Meila
[2] presents a weighted-cut algorithm (BestWCut) that applies to asymmetric affinity matrices. BestWCut is
parametrically tunable to adopt the behavior of a range of clustering methods. One of these is WNCut, which acts as
a weighted normalized cut. This paper demonstrates applicability of this algorithm to hierarchical clustering of
system architectures based on the data available early in the design process. An adjacency matrix, based on a
system-complexity metric, is used as the affinity matrix. This algorithm is applied recursively to form the
hierarchical clustering.

The remaining sections of this paper are organized as follows. Section II will define the problem, section III will
present a solution approach, and section IV will provide an example application of this solution approach. The
paper concludes with a summary and with suggested extensions.

II. Problem Definition

This paper presents a method for determining the lowest-complexity hierarchical decomposition of a given
architecture, based on a specified hierarchical complexity metric. This method uses a spectral graph partitioning
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algorithm recursively to determine the hierarchy of modules based on the limited information available at this early
stage in the design process.

The focus of this paper is the spectral graph partitioning; however, to understand the information available and
how the result is used, the following subsections will present the context in which the spectral graph partitioning
problem is solved. The partitioning method is one of three techniques that are employed together to reduce the
enormous design space to a manageable size before proceeding to a lower level of abstraction, using higher fidelity
models: architectural enumeration, a complexity metric, and spectral graph partitioning for hierarchical system
clustering.

A. Architectural Enumeration
The entire architectural design space is considered rapidly to identify the feasible set of architectures that meet

configuration requirements. [1] The architectural design space is enormous, but the feasible set is extremely sparse.
Generative filters are used to rapidly consider the entire design space and identify the entire feasible set. The
architectural design space is specified by identifying the technology alternatives at the relevant level (e.g., device,
subsystem), the energy/fuel/data flow types between devices or subsystems, and the energy/fuel/data inputs and
outputs of each technology alternative. Architectural enumeration results in a list of feasible architectures.

Architectural enumeration begins with the selection of relevant component technologies, the identification of
compatible input and output energy flow types, and the identification of application requirements and constraints as
filters. The Knowledge Center is an organizational repository of component technology descriptions.

Once the inputs and filters have been specified, architectural enumeration performs rapid design-space reduction
according to those inputs and filters. The exponential size of the design space necessitates an approach that doesn’t
implement the filter criteria as “evaluative” filters, constructing each point in the design space and then evaluating it.
Instead, “generative” filters use knowledge of the problem structure to directly identify the points in the feasible set,
with minimal computational overhead. [1]

B. Complexity Metric
A complexity metric can be created to represent principles regarding the propagation of complexity and how it

drives system cost. [41] Table 1 provides several examples of complexity principles believed to be relevant to
aerospace systems; however, the purpose of including them in this paper is not to focus on the specific principles
themselves, but to illustrate how such principles can be combined to create a complexity metric that embodies them.
This background will help the reader to understand how the complexity metric is implemented in hierarchically
iterative execution of spectral graph partitioning.

Table 1 - Complexity Principles

Principle Description Diagram
Node complexity A system’s complexity increases as the

complexity of its constituent parts increases.

Number of nodes The complexity increases as the number of
constituent parts increases.
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Number of links The complexity increases as the number of
interconnections increases.

Types of links The complexity that each type of
interconnection adds to a system is based on
the type of energy/fuel/data flow.

Roll-up A module encapsulates the complexity of
the elements inside it and their
interconnections with one another and with
the module’s environment.

Shared
conveyance

Multiple interconnections of the same
energy/fuel/data flow type linking two
embedded modules may present lower
complexity together than separately.

Pass-through An interconnection passing from one
embedded subsystem to another represents
complexity within those embedded systems,
but little complexity in their parent system,
which adds minimal value to the flow.

Complexity
isolation

Clustering nodes and their interconnections
into hierarchical modular clusters localizes
complexity so that other modules and higher
levels may have lower complexity.
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Clustering cost While clustering is beneficial, there are
design, fabrication, test, maintenance and
other costs associated with each modular
interface. The benefit of complexity
isolation is balanced in the complexity
metric by an associated cost.

Complexity principles can be embedded in a complexity metric. For example, Jones, et al. [42] present a
complexity metric that embodies a few of these principles: node complexity, number of nodes, and number of links.
Their complexity metric is:

The node complexity principle is embodied in the distinction between three types of nodes: receivers (Nr),
transmitters (Ns), and transceivers (Ns/r), and their multiplication by three separate complexity factors, h, g and d.
The number of nodes principle is embodied in multiplication by the term (dNs/r + gNs + hNr). The number of links
principle is embodied by the term Lt.

C. Spectral Graph Partitioning for Hierarchical System Clustering
Spectral methods are applied iteratively to each architecture to cut the architecture into hierarchical modular

clusters that minimize the complexity of that architecture as measured by the complexity metric. The partitioning
method enables principles of cost due to complexity to be represented in the graph adjacency matrix used as input.
The adjacency matrix describes the energy/fuel/data flows between devices or subsystems. Principles regarding the
propagation of complexity and how it drives cost are embodied in the way those flows are quantified, in the
adjacency matrix, as the spectral methods are applied iteratively to create the hierarchy. These spectral methods are
the subject of this paper.

The technical challenge is to partitioning a system architecture rapidly into a hierarchical set of modules that will
minimize system complexity as measured by a complexity metric. The system architecture is expressed as a graph
of subsystems interconnected by edges along which energy, fuel or data flow. This graph is a multidigraph, a
directed graph in which each pair of vertices can have multiple edges connecting them.

III. Solution Approach

This section will describe the spectral graph partitioning solution approach applied iteratively to hierarchically
cluster the subsystems. The solution approach is based on iterative application of the BestWCut algorithm presented
in Meila[2]. In addition, as BestWCut is focused on different levels within the architecture, certain cross-cutting
complexity principles will be applied, as part of the complexity metric, to form the adjacency matrix. The adjacency
matrix serves as an interface between the BestWCut algorithm and both the architectural enumeration and
complexity metric.

The BestWCut algorithm [2] is:

Input Affinity matrix A, weights T, T’, number of clusters K.

1. AT’A
2. Di ∑n

j=1 Aij , D = diag{Di}i
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3. H(B) ½ T-½ (2D – A - AT) T-½

4. Compute Y the n × K matrix with orthonormal columns containing the K smallest eigenvectors of
H(B)

5. Cluster the rows of X = T-½Y as points in RK.
(Variant: Normalize the rows of Y to have length 1, then cluster them as points in RK.)

The affinity or adjacency matrix A has the distinction, among spectral graph partitioning algorithms, of being
asymmetric, which is necessary to represent a directed multigraph. However, it is useful to modify step 2 in the
algorithm so that the Di are a function of both the in-degree and the out-degree of the graph vertices. Meila [2]
identifies this definition of Di as a “direct authority” model, in which a node's importance is equal to the number
of its outgoing links. Meila suggests transposing A to address problems that are dominantly in-bound, such as
citations and internet web links, however, for a general directed multigraph, the forward and backward links,
above and below the diagonal, are of equal importance. A suitable alternative for task 2 is to define Di as the
average of the in-degree and out-degree, although other formulations may work as well:

Di ( (∑n
i=1 Aij) + (∑n

j=1 Aij) ) /2.

In addition, with this definition for the Di, the clustering in step 5 achieves better results if it algorithmically
ignores any constant eigenvectors.
The next section will explain how the WBestCut algorithm can be applied hierarchically to cluster a system.

IV. Example Application

The example application is drawn from aircraft design and focuses on power and thermal management. The
system is described in terms of a set of subsystems and their interconnections via energy, fuel and data flows,
including flows to and from the rest of the aircraft.

A. Architectural Enumeration
There are seven subsystems, which are listed in Table 2

There are 15 types of energy, fuel and data flows (listed in Table 3 in order of decreasing complexity):

Table 2 - Subsystems, their functions and complexity values

Table 3 - Inputs: Energy, fuel and data flows
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Each flow has a name, may be a form of power, may be an available system input or a desired system output, has
a link color (for display on the architectural layout), has a total complexity (according to Link types complexity
principle), and has a breakdown of that total complexity into the complexity to send, convey and receive that type of
flow.

Each type of subsystem can accept certain types of energy, fuel and data flows (listed in Table 4):

Likewise, each type of subsystem can produce certain types of energy, fuel and data flows (listed in Table 5):

The architectural enumeration for this problem produced ~20,000 feasible architectures in under 1 minute.
These architectures pass all of the specified requirements and constraints, so they are feasible in the sense that they
are configured feasibly. At this point in the process, neither complexity nor other value metrics such as
performance, weight, durability, etc. have been evaluated.

One of the feasible architectures is shown in Figure 2. It will be examined further below.

Table 5 - Subsystem flow outputs

Table 4 - Subsystem flow inputs
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B. Complexity Metric
Following the WBestCut algorithm (Section III Solution Approach), we begin with the inputs. The diagonal

weights T and T’ are both set to 1 to emulate an average cut, so T = T’ = I (identity matrix).
The adjacency matrix is built using the complexity principles represented in the complexity metric. For each

pair of nodes in the architecture (Error! Reference source not found.) i and j, the adjacency matrix term Aij is the
sum of the complexities of the directed links from node i to node j. The types of links principle is applied to
determine the link complexities associated with each interconnecting energy / fuel / data flow (Table 6):

The resulting adjacency matrix is shown in Table 7:

Table 7 - Adjacency matrix.

Table 6 - Types of links and complexities.

Figure 2 - A feasible architecture
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The adjacency matrix is then normalized to sum to 1, resulting in the adjacency matrix A, shown in Table 8:

C. Spectral Graph Partitioning
This section will show how the BestWCut algorithm is applied, given this normalized adjacency matrix which

embodies the relevant complexity principles. The D matrix is constructed so that the Di terms are the average of the
ith row sum and the ith column sum of A, to include both outgoing and incoming link complexity of each node, as
shown in Table 9:

The Hermitian matrix H(B) is defined in step 3 of the WBestCut algorithm as:
3. H(B) ½ T-½ (2D – A - AT) T-½

However, since T is an identity matrix, we can simplify to:
H(B) ½ (2D – A - AT)

So the resulting Hermitian matrix is shown in Table 10:

Table 8 - Normalized adjacency matrix.

Table 9 - D matrix.

Table 10 - Hermitian matrix H(B).
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Figure 3 - Architecture clustered with K=2.

The eigenvalues and eigenvectors of the Hermitian matrix are shown in Table 11:

Since the first eigenvector is constant, it is discarded. For k=2, the 2nd and 3rd eigenvectors are clustered in R2

yielding two clusters, as shown in Table 12:

The architectural layout corresponding to this clustering is shown in Figure 3:

Table 12 - Clusters for K=2.

Table 11- Eigenvalues and Eigenvectors of H(B).
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Figure 4 - Architecture clustered with K=3.

The architecture clustered with K=3 is shown in Figure 4:

V. Conclusion

A method for minimizing the complexity of large systems by hierarchically clustering them and thereby reducing
their total system cost has been described. It differs from prior methods in that it uses only the information available
at the earliest stages of system architecting, is fully automated, and is computationally faster than search algorithms.
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